These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34983380)

  • 41. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptome-wide profiling and expression analysis of diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei under drought stress.
    Xu E; Fan G; Niu S; Zhao Z; Deng M; Dong Y
    PLoS One; 2014; 9(11):e113313. PubMed ID: 25405758
    [TBL] [Abstract][Full Text] [Related]  

  • 43. De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress.
    Zhang X; Yang Z; Li Z; Zhang F; Hao L
    Gene; 2019 Aug; 710():375-386. PubMed ID: 31200084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress.
    Bhardwaj J; Chauhan R; Swarnkar MK; Chahota RK; Singh AK; Shankar R; Yadav SK
    BMC Genomics; 2013 Sep; 14():647. PubMed ID: 24059455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress.
    Liu J; Deng JL; Tian Y
    Phytochemistry; 2020 Mar; 171():112226. PubMed ID: 31923721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (
    Zhang F; Zhou Y; Zhang M; Luo X; Xie J
    Biosci Rep; 2017 Jun; 37(3):. PubMed ID: 28424372
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.
    Song L; Prince S; Valliyodan B; Joshi T; Maldonado dos Santos JV; Wang J; Lin L; Wan J; Wang Y; Xu D; Nguyen HT
    BMC Genomics; 2016 Jan; 17():57. PubMed ID: 26769043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions.
    Chen LM; Zhou XA; Li WB; Chang W; Zhou R; Wang C; Sha AH; Shan ZH; Zhang CJ; Qiu DZ; Yang ZL; Chen SL
    BMC Genomics; 2013 Oct; 14():687. PubMed ID: 24093224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physiological, Biochemical and Transcriptomic Analysis of the Aerial Parts (Leaf-Blade and Petiole) of
    Liu F; Ali T; Liu Z
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948197
    [No Abstract]   [Full Text] [Related]  

  • 50. Daytime soybean transcriptome fluctuations during water deficit stress.
    Rodrigues FA; Fuganti-Pagliarini R; Marcolino-Gomes J; Nakayama TJ; Molinari HB; Lobo FP; Harmon FG; Nepomuceno AL
    BMC Genomics; 2015 Jul; 16(1):505. PubMed ID: 26149272
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Medium term water deficit elicits distinct transcriptome responses in Eucalyptus species of contrasting environmental origin.
    Spokevicius AV; Tibbits J; Rigault P; Nolin MA; Müller C; Merchant A
    BMC Genomics; 2017 Apr; 18(1):284. PubMed ID: 28388878
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress.
    Wang J; Zheng R; Bai S; Gao X; Liu M; Yan W
    PLoS One; 2015; 10(4):e0124442. PubMed ID: 25893685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of drought on the microtranscriptome of field-grown sugarcane plants.
    Gentile A; Ferreira TH; Mattos RS; Dias LI; Hoshino AA; Carneiro MS; Souza GM; Calsa T; Nogueira RM; Endres L; Menossi M
    Planta; 2013 Mar; 237(3):783-98. PubMed ID: 23129215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiological performance and differential expression profiling of genes associated with drought tolerance in root tissue of four contrasting varieties of two Gossypium species.
    Singh R; Pandey N; Kumar A; Shirke PA
    Protoplasma; 2016 Jan; 253(1):163-74. PubMed ID: 25802007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptional responses to water stress and recovery in a drought-tolerant fescue wild grass (
    Qiu F; Bachle S; Estes R; Duvall MR; Nippert JB; Ungerer MC
    Genome; 2021 Jan; 64(1):15-27. PubMed ID: 33002373
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis.
    Peng S; Jiang H; Zhang S; Chen L; Li X; Korpelainen H; Li C
    Tree Physiol; 2012 Dec; 32(12):1541-55. PubMed ID: 23148036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. De novo transcriptomic analysis of Doum Palm (Hyphaene compressa) revealed an insight into its potential drought tolerance.
    Borlay AJ; Mweu CM; Nyanjom SG; Omolo KM; Naitchede LHS
    PLoS One; 2024; 19(3):e0292543. PubMed ID: 38470884
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of drought response genes by digital gene expression (DGE) analysis in Caragana korshinskii Kom.
    Long Y; Liang F; Zhang J; Xue M; Zhang T; Pei X
    Gene; 2020 Jan; 725():144170. PubMed ID: 31647996
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation.
    Nuruzzaman M; Sharoni AM; Satoh K; Kumar A; Leung H; Kikuchi S
    J Plant Physiol; 2014 Jan; 171(1):2-13. PubMed ID: 24189206
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms.
    Zhang Y; Gao X; Li J; Gong X; Yang P; Gao J; Wang P; Feng B
    BMC Plant Biol; 2019 Sep; 19(1):397. PubMed ID: 31510928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.