These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 34983578)

  • 1. High throughput phenotyping of cross-sectional morphology to assess stalk lodging resistance.
    Oduntan YA; Stubbs CJ; Robertson DJ
    Plant Methods; 2022 Jan; 18(1):1. PubMed ID: 34983578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of plant weight on estimations of stalk lodging resistance.
    Stubbs CJ; Oduntan YA; Keep TR; Noble SD; Robertson DJ
    Plant Methods; 2020; 16():128. PubMed ID: 32973914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Puncture Score: force-displacement weighted rind penetration tests improve stalk lodging resistance estimations in maize.
    Stubbs CJ; McMahan C; Seegmiller W; Cook DD; Robertson DJ
    Plant Methods; 2020; 16():113. PubMed ID: 32821268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse maize hybrids are structurally inefficient at resisting wind induced bending forces that cause stalk lodging.
    Stubbs CJ; Seegmiller K; McMahan C; Sekhon RS; Robertson DJ
    Plant Methods; 2020; 16():67. PubMed ID: 32426024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-based mechanical phenotyping of cereal crops to assess lodging resistance.
    Erndwein L; Cook DD; Robertson DJ; Sparks EE
    Appl Plant Sci; 2020 Aug; 8(8):e11382. PubMed ID: 32995102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops.
    Salas Fernandez MG; Bao Y; Tang L; Schnable PS
    Plant Physiol; 2017 Aug; 174(4):2008-2022. PubMed ID: 28620124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AraDQ: an automated digital phenotyping software for quantifying disease symptoms of flood-inoculated Arabidopsis seedlings.
    Lee JH; Lee U; Yoo JH; Lee TS; Jung JH; Kim HS
    Plant Methods; 2024 Mar; 20(1):44. PubMed ID: 38493119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A "Do-It-Yourself" phenotyping system: measuring growth and morphology throughout the diel cycle in rosette shaped plants.
    Dobrescu A; Scorza LCT; Tsaftaris SA; McCormick AJ
    Plant Methods; 2017; 13():95. PubMed ID: 29151842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maize brace roots provide stalk anchorage.
    Reneau JW; Khangura RS; Stager A; Erndwein L; Weldekidan T; Cook DD; Dilkes BP; Sparks EE
    Plant Direct; 2020 Nov; 4(11):e00284. PubMed ID: 33204937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research Progress on Mechanical Strength of Rice Stalks.
    Yang H; Huang J; Ye Y; Xu Y; Xiao Y; Chen Z; Li X; Ma Y; Lu T; Rao Y
    Plants (Basel); 2024 Jun; 13(13):. PubMed ID: 38999566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline.
    Dupuy LX; Wright G; Thompson JA; Taylor A; Dekeyser S; White CP; Thomas WTB; Nightingale M; Hammond JP; Graham NS; Thomas CL; Broadley MR; White PJ
    Plant Methods; 2017; 13():57. PubMed ID: 28717384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping.
    Klukas C; Chen D; Pape JM
    Plant Physiol; 2014 Jun; 165(2):506-518. PubMed ID: 24760818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raspberry Pi-powered imaging for plant phenotyping.
    Tovar JC; Hoyer JS; Lin A; Tielking A; Callen ST; Elizabeth Castillo S; Miller M; Tessman M; Fahlgren N; Carrington JC; Nusinow DA; Gehan MA
    Appl Plant Sci; 2018 Mar; 6(3):e1031. PubMed ID: 29732261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrete element modeling and experimental study of biomechanical properties of cotton stalks in machine-harvested film-stalk mixtures.
    Zhang J; Xie J; Du Y; Li Y; Yue Y; Cao S
    Sci Rep; 2024 Jun; 14(1):12933. PubMed ID: 38839762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image-based methods for phenotyping growth dynamics and fitness components in
    Vasseur F; Bresson J; Wang G; Schwab R; Weigel D
    Plant Methods; 2018; 14():63. PubMed ID: 30065776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histological quantification of maize stem sections from FASGA-stained images.
    Legland D; El-Hage F; Méchin V; Reymond M
    Plant Methods; 2017; 13():84. PubMed ID: 29118822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Phenotyping for Everyone: A Low Cost, All-in-One Plant Growth Phenotyping System.
    Alptekin B
    Plant Physiol; 2024 Jul; ():. PubMed ID: 39046128
    [No Abstract]   [Full Text] [Related]  

  • 18. The semi-automated development of plant cell wall finite element models.
    Sayad A; Oduntan Y; Bokros N; DeBolt S; Benzecry A; Robertson DJ; Stubbs CJ
    Plant Methods; 2023 Jan; 19(1):3. PubMed ID: 36624506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robust and efficient automatic method to segment maize FASGA stained stem cross section images to accurately quantify histological profile.
    Lopez-Marnet PL; Guillaume S; Méchin V; Reymond M
    Plant Methods; 2022 Nov; 18(1):125. PubMed ID: 36424625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-sectional geometry predicts failure location in maize stalks.
    Stubbs CJ; McMahan CS; Tabaracci K; Kunduru B; Sekhon RS; Robertson DJ
    Plant Methods; 2022 Apr; 18(1):56. PubMed ID: 35477510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.