BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 34983601)

  • 1. Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines.
    Maitre A; Wu-Chuang A; Aželytė J; Palinauskas V; Mateos-Hernández L; Obregon D; Hodžić A; Valiente Moro C; Estrada-Peña A; Paoli JC; Falchi A; Cabezas-Cruz A
    Parasit Vectors; 2022 Jan; 15(1):4. PubMed ID: 34983601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-Microbiota Vaccine Reduces Avian Malaria Infection Within Mosquito Vectors.
    Aželytė J; Wu-Chuang A; Žiegytė R; Platonova E; Mateos-Hernandez L; Maye J; Obregon D; Palinauskas V; Cabezas-Cruz A
    Front Immunol; 2022; 13():841835. PubMed ID: 35309317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiota in disease-transmitting vectors.
    Wang J; Gao L; Aksoy S
    Nat Rev Microbiol; 2023 Sep; 21(9):604-618. PubMed ID: 37217793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin and arthropods: an effective interaction used by pathogens in vector-borne diseases.
    Bernard Q; Jaulhac B; Boulanger N
    Eur J Dermatol; 2015 Apr; 25 Suppl 1():18-22. PubMed ID: 26083670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of host immunity by haematophagous arthropods.
    Schoeler GB; Wikel SK
    Ann Trop Med Parasitol; 2001 Dec; 95(8):755-71. PubMed ID: 11784430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress toward molecular characterization of ectoparasite modulation of host immunity.
    Wikel SK; Alarcon-Chaidez FJ
    Vet Parasitol; 2001 Nov; 101(3-4):275-87. PubMed ID: 11707302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does the arthropod microbiota impact the establishment of vector-borne diseases in mammalian hosts?
    Finney CA; Kamhawi S; Wasmuth JD
    PLoS Pathog; 2015 Apr; 11(4):e1004646. PubMed ID: 25856431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission.
    Titus RG; Bishop JV; Mejia JS
    Parasite Immunol; 2006 Apr; 28(4):131-41. PubMed ID: 16542315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission.
    Bonnet SI; Binetruy F; Hernández-Jarguín AM; Duron O
    Front Cell Infect Microbiol; 2017; 7():236. PubMed ID: 28642842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arthropod-borne pathogens of dogs and cats: From pathways and times of transmission to disease control.
    Otranto D
    Vet Parasitol; 2018 Feb; 251():68-77. PubMed ID: 29426479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens.
    Caragata EP; Short SM
    Curr Opin Insect Sci; 2022 Apr; 50():100875. PubMed ID: 35065286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic interactions between disease-transmitting vectors and their microbiota.
    Song X; Zhong Z; Gao L; Weiss BL; Wang J
    Trends Parasitol; 2022 Aug; 38(8):697-708. PubMed ID: 35643853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tick vaccines and the control of tick-borne pathogens.
    Merino O; Alberdi P; Pérez de la Lastra JM; de la Fuente J
    Front Cell Infect Microbiol; 2013; 3():30. PubMed ID: 23847771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding pathogen survival and transmission by arthropod vectors to prevent human disease.
    Barillas-Mury C; Ribeiro JMC; Valenzuela JG
    Science; 2022 Sep; 377(6614):eabc2757. PubMed ID: 36173836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases.
    de la Fuente J; Antunes S; Bonnet S; Cabezas-Cruz A; Domingos AG; Estrada-Peña A; Johnson N; Kocan KM; Mansfield KL; Nijhof AM; Papa A; Rudenko N; Villar M; Alberdi P; Torina A; Ayllón N; Vancova M; Golovchenko M; Grubhoffer L; Caracappa S; Fooks AR; Gortazar C; Rego ROM
    Front Cell Infect Microbiol; 2017; 7():114. PubMed ID: 28439499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host-pathogen interaction in arthropod vectors: Lessons from viral infections.
    Perveen N; Muhammad K; Muzaffar SB; Zaheer T; Munawar N; Gajic B; Sparagano OA; Kishore U; Willingham AL
    Front Immunol; 2023; 14():1061899. PubMed ID: 36817439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tick salivary compounds: their role in modulation of host defences and pathogen transmission.
    Kazimírová M; Štibrániová I
    Front Cell Infect Microbiol; 2013; 3():43. PubMed ID: 23971008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial control of arthropod-borne disease.
    Saldaña MA; Hegde S; Hughes GL
    Mem Inst Oswaldo Cruz; 2017 Feb; 112(2):81-93. PubMed ID: 28177042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vaccines against arthropods.
    Kay BH; Kemp DH
    Am J Trop Med Hyg; 1994; 50(6 Suppl):87-96. PubMed ID: 8024089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunological consequences of arthropod vector-derived salivary factors.
    Leitner WW; Costero-Saint Denis A; Wali T
    Eur J Immunol; 2011 Dec; 41(12):3396-400. PubMed ID: 22125007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.