These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34983851)

  • 1. Direct measurement of the viscoelectric effect in water.
    Jin D; Hwang Y; Chai L; Kampf N; Klein J
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34983851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetics of the silica and aqueous electrolyte solution interface: Viscoelectric effects.
    Hsu WL; Daiguji H; Dunstan DE; Davidson MR; Harvie DJE
    Adv Colloid Interface Sci; 2016 Aug; 234():108-131. PubMed ID: 27217082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of viscoelectric effect on diffusioosmotic transport in nanochannel.
    Mehta SK; Mondal PK
    Electrophoresis; 2023 Jan; 44(1-2):44-52. PubMed ID: 35775948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluidity of water confined down to subnanometer films.
    Raviv U; Perkin S; Laurat P; Klein J
    Langmuir; 2004 Jun; 20(13):5322-32. PubMed ID: 15986669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface forces generated by the action of electric fields across liquid films.
    Perez-Martinez CS; Perkin S
    Soft Matter; 2019 May; 15(21):4255-4265. PubMed ID: 31020308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakup of a supported drop of a viscous conducting liquid in a uniform electric field.
    Higuera FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016314. PubMed ID: 18764057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetics of non-Newtonian fluids: a review.
    Zhao C; Yang C
    Adv Colloid Interface Sci; 2013 Dec; 201-202():94-108. PubMed ID: 24148843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New SFA techniques for studying surface forces and thin film patterns induced by electric fields.
    Zeng H; Tian Y; Anderson TH; Tirrell M; Israelachvili JN
    Langmuir; 2008 Feb; 24(4):1173-82. PubMed ID: 17939692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superviscosity and electroviscous effects at an electrode/aqueous electrolyte interface: an atomic force microscope study.
    Guriyanova S; Mairanovsky VG; Bonaccurso E
    J Colloid Interface Sci; 2011 Aug; 360(2):800-4. PubMed ID: 21570084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.
    Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW
    Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrorheological effects and gating of membrane channels.
    Green ME
    J Theor Biol; 1989 Jun; 138(4):413-28. PubMed ID: 2480494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of the Electric Field on Surface Condensation of Water Vapor: Insight from Molecular Dynamics Simulation.
    Wang Q; Xie H; Hu Z; Liu C
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30621199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of Acoustic Energy Absorption in Confined Aqueous Solutions by PNIPAM Microgels: Effects of Bulk Viscosity.
    Rahimzadeh A; Rutsch M; Kupnik M; Klitzing RV
    Langmuir; 2021 May; 37(19):5854-5863. PubMed ID: 33961436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaching a realistic force balance in geodynamo simulations.
    Yadav RK; Gastine T; Christensen UR; Wolk SJ; Poppenhaeger K
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12065-12070. PubMed ID: 27790991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic motion of a spherical micro particle at an oil-water interface in microchannel.
    Wang C; Li M; Song Y; Pan X; Li D
    Electrophoresis; 2018 Mar; 39(5-6):807-815. PubMed ID: 28926100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-uniform velocity of homogeneous DNA in a uniform electric field: consequence of electric-field-induced slow dissociation of highly stable DNA-counterion complexes.
    Musheev MU; Kanoatov M; Krylov SN
    J Am Chem Soc; 2013 May; 135(21):8041-6. PubMed ID: 23646889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regimes of streaming potential in cylindrical nano-pores in presence of finite sized ions and charge induced thickening: an analytical approach.
    Bandopadhyay A; Goswami P; Chakraborty S
    J Chem Phys; 2013 Dec; 139(22):224503. PubMed ID: 24329074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-wetting of a nanoscale water droplet on a polar solid surface in electric fields.
    Song F; Ma L; Fan J; Chen Q; Lei G; Li BQ
    Phys Chem Chem Phys; 2018 May; 20(17):11987-11993. PubMed ID: 29671435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.