BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34983885)

  • 1. Deep learning-based extended field of view computed tomography image reconstruction: influence of network design on image estimation outside the scan field of view.
    Khural BS; Baer-Beck M; Fournié E; Stierstorfer K; Huang Y; Maier A
    Biomed Phys Eng Express; 2022 Feb; 8(2):. PubMed ID: 34983885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the impact of extended field-of-view CT reconstructions on CT values and dosimetric accuracy for radiation therapy.
    Cheung JP; Shugard E; Mistry N; Pouliot J; Chen J
    Med Phys; 2019 Feb; 46(2):892-901. PubMed ID: 30457170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A platform-independent method to reduce CT truncation artifacts using discriminative dictionary representations.
    Chen Y; Budde A; Li K; Li Y; Hsieh J; Chen GH
    Med Phys; 2017 Jan; 44(1):121-131. PubMed ID: 28102942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enhanced reconstruction algorithm to extend CT scan field-of-view with z-axis consistency constraint.
    Li B; Deng J; Lonn AH; Hsieh J
    Med Phys; 2012 Oct; 39(10):6028-34. PubMed ID: 23039641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning.
    Wu V; Podgorsak MB; Tran TA; Malhotra HK; Wang IZ
    Med Phys; 2011 Jul; 38(7):4451-63. PubMed ID: 21859046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel reconstruction algorithm to extend the CT scan field-of-view.
    Hsieh J; Chao E; Thibault J; Grekowicz B; Horst A; McOlash S; Myers TJ
    Med Phys; 2004 Sep; 31(9):2385-91. PubMed ID: 15487717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of novel AI-based extended field-of-view CT reconstructions.
    Fonseca GP; Baer-Beck M; Fournie E; Hofmann C; Rinaldi I; Ollers MC; van Elmpt WJC; Verhaegen F
    Med Phys; 2021 Jul; 48(7):3583-3594. PubMed ID: 33978240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of geometric shape-based CT field-of-view extension algorithms in an all-digital positron emission tomography/computed tomography system.
    Hu T; Li B; Yang J; Zhang B; Fang L; Liu Y; Xiao P; Xie Q
    Med Phys; 2024 Feb; 51(2):1034-1046. PubMed ID: 38103259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative adversarial networks improve interior computed tomography angiography reconstruction.
    Ketola JHJ; Heino H; Juntunen MAK; Nieminen MT; Siltanen S; Inkinen SI
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34673559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT.
    Han Y; Ye JC
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1418-1429. PubMed ID: 29870370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
    Gong H; Ren L; Hsieh SS; McCollough CH; Yu L
    Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reconstruction from CT truncated data based on dual-domain transformer coupled feature learning].
    Wang C; Meng M; Li M; Wang Y; Zeng D; Bian Z; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 May; 44(5):950-959. PubMed ID: 38862453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse-view CT reconstruction based on multi-level wavelet convolution neural network.
    Lee M; Kim H; Kim HJ
    Phys Med; 2020 Dec; 80():352-362. PubMed ID: 33279829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography.
    Clark DP; Schwartz FR; Marin D; Ramirez-Giraldo JC; Badea CT
    Med Phys; 2020 Sep; 47(9):4150-4163. PubMed ID: 32531114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning method for eliminating head motion artifacts in computed tomography.
    Su B; Wen Y; Liu Y; Liao S; Fu J; Quan G; Li Z
    Med Phys; 2022 Jan; 49(1):411-419. PubMed ID: 34786714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical decomposed dual-domain deep learning for sparse-view CT reconstruction.
    Han Y
    Phys Med Biol; 2024 Apr; 69(8):. PubMed ID: 38457843
    [No Abstract]   [Full Text] [Related]  

  • 20. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.