These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34983906)

  • 1. Changes in microRNA Expression Profiles in Diabetic Cardiomyopathy Rats Following H3 Relaxin Treatment.
    Zhang X; Liu M; Yang K; Chi J; Chen W; Shi Z; Liu W; Ma X; Yin X
    J Cardiovasc Pharmacol; 2022 Apr; 79(4):530-538. PubMed ID: 34983906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H3 Relaxin Protects Against Myocardial Injury in Experimental Diabetic Cardiomyopathy by Inhibiting Myocardial Apoptosis, Fibrosis and Inflammation.
    Zhang X; Pan L; Yang K; Fu Y; Liu Y; Chi J; Zhang X; Hong S; Ma X; Yin X
    Cell Physiol Biochem; 2017; 43(4):1311-1324. PubMed ID: 28992627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression profiles and bioinformatic analysis of microRNAs in myocardium of diabetic cardiomyopathy mice.
    Wang T; Yuan L; Chen Y; Wang J; Li N; Zhou H
    Genes Genomics; 2023 Aug; 45(8):1003-1011. PubMed ID: 37253907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microarray profiling analysis identifies the mechanism of miR-200b-3p/mRNA-CD36 affecting diabetic cardiomyopathy via peroxisome proliferator activated receptor-γ signaling pathway.
    Xu L; Chen W; Ma M; Chen A; Tang C; Zhang C; Cai L
    J Cell Biochem; 2019 Apr; 120(4):5193-5206. PubMed ID: 30506990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of microRNAs in the pathophysiology, diagnosis, and treatment of diabetic cardiomyopathy.
    Abdel Rhman M; Owira P
    J Pharm Pharmacol; 2022 Nov; 74(12):1663-1676. PubMed ID: 36130185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucagon-Like Peptide-1 Receptor Agonist Protects Against Diabetic Cardiomyopathy by Modulating microRNA-29b-3p/SLMAP.
    Fang P; Ye Z; Li R; She D; Zong G; Zhang L; Xue Y; Zhang K
    Drug Des Devel Ther; 2023; 17():791-806. PubMed ID: 36936522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Investigation on the differentially expressed circular RNAs in myocardium of mice with diabetic cardiomyopathy].
    Wu XG; Zhang SC; Zhou X
    Zhonghua Xin Xue Guan Bing Za Zhi; 2022 May; 50(5):501-508. PubMed ID: 35589600
    [No Abstract]   [Full Text] [Related]  

  • 8. Expression profiling of circular RNAs and their potential role in early‑stage diabetic cardiomyopathy.
    Dong S; Tu C; Ye X; Li L; Zhang M; Xue A; Chen S; Zhao Z; Cong B; Lin J; Shen Y
    Mol Med Rep; 2020 Sep; 22(3):1958-1968. PubMed ID: 32705182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of hub genes and potential ceRNA networks of diabetic cardiomyopathy.
    Hou J; Liang WY; Xiong S; Long P; Yue T; Wen X; Wang T; Deng H
    Sci Rep; 2023 Jun; 13(1):10258. PubMed ID: 37355664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs: A Critical Regulator and a Promising Therapeutic and Diagnostic Molecule for Diabetic Cardiomyopathy.
    Mathur P; Rani V
    Curr Gene Ther; 2021; 21(4):313-326. PubMed ID: 33719971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydromyricetin Prevents Diabetic Cardiomyopathy via miR-34a Suppression by Activating Autophagy.
    Ni T; Lin N; Lu W; Sun Z; Lin H; Chi J; Guo H
    Cardiovasc Drugs Ther; 2020 Jun; 34(3):291-301. PubMed ID: 32212062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exosomal microRNAs: potential targets for the prevention and treatment of diabetic cardiomyopathy.
    Zhang T; Gao Z; Chen K
    J Cardiol; 2022 Nov; 80(5):423-431. PubMed ID: 35000826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of relaxin and its receptor system components in experimental diabetic cardiomyopathy rats.
    Zhang X; Pan L; Yang K; Fu Y; Liu Y; Chen W; Ma X; Yin X
    Cell Tissue Res; 2017 Nov; 370(2):297-304. PubMed ID: 28776188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of microRNA expression profiles in patients with intervertebral disc degeneration.
    Zhao B; Yu Q; Li H; Guo X; He X
    Int J Mol Med; 2014 Jan; 33(1):43-50. PubMed ID: 24173697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GAS5 regulates diabetic cardiomyopathy via miR‑221‑3p/p27 axis‑associated autophagy.
    Chen D; Zhang M
    Mol Med Rep; 2021 Feb; 23(2):. PubMed ID: 33313941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dysregulation of circulating miRNAs promotes the pathogenesis of diabetes-induced cardiomyopathy.
    Ahmed U; Ashfaq UA; Qasim M; Ahmad I; Ahmad HU; Tariq M; Masoud MS; Khaliq S
    PLoS One; 2021; 16(4):e0250773. PubMed ID: 33909697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA.
    Yang X; Li X; Lin Q; Xu Q
    Gene; 2019 Oct; 715():143995. PubMed ID: 31336140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulating miRNAs in diabetic kidney disease: case-control study and in silico analyses.
    Assmann TS; Recamonde-Mendoza M; Costa AR; Puñales M; Tschiedel B; Canani LH; Bauer AC; Crispim D
    Acta Diabetol; 2019 Jan; 56(1):55-65. PubMed ID: 30167868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and analysis of a lncRNA‑miRNA‑mRNA network based on competitive endogenous RNA reveals functional lncRNAs in diabetic cardiomyopathy.
    Chen K; Ma Y; Wu S; Zhuang Y; Liu X; Lv L; Zhang G
    Mol Med Rep; 2019 Aug; 20(2):1393-1403. PubMed ID: 31173240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of mitochondrial metabolic disorder and immune infiltration in diabetic cardiomyopathy: new insights from bioinformatics analysis.
    Peng C; Zhang Y; Lang X; Zhang Y
    J Transl Med; 2023 Feb; 21(1):66. PubMed ID: 36726122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.