BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34984175)

  • 1. A multi-purpose pilot-scale molten metal & molten salt pyrolysis reactor.
    Riedewald F; Povey I; O'Mahoney M; Sousa-Gallagher M
    MethodsX; 2022; 9():101606. PubMed ID: 34984175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling of aluminium laminated pouches and Tetra Pak cartons by molten metal pyrolysis - Pilot-scale experiments and economic analysis.
    Riedewald F; Wilson E; Patel Y; Vogt D; Povey I; Barton K; Lewis L; Caris T; Santos S; O'Mahoney M; Sousa-Gallagher M
    Waste Manag; 2022 Feb; 138():172-179. PubMed ID: 34896737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel waste printed circuit board recycling process with molten salt.
    Riedewald F; Sousa-Gallagher M
    MethodsX; 2015; 2():100-6. PubMed ID: 26150977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Economic assessment of a 40,000 t/y mixed plastic waste pyrolysis plant using direct heat treatment with molten metal: A case study of a plant located in Belgium.
    Riedewald F; Patel Y; Wilson E; Santos S; Sousa-Gallagher M
    Waste Manag; 2021 Feb; 120():698-707. PubMed ID: 33191052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Bio-oil production from biomass pyrolysis in molten salt].
    Ji D; Cai T; Ai N; Yu F; Jiang H; Ji J
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):475-81. PubMed ID: 21650030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scrap tyre recycling process with molten zinc as direct heat transfer and solids separation fluid: A new reactor concept.
    Riedewald F; Goode K; Sexton A; Sousa-Gallagher MJ
    MethodsX; 2016; 3():399-406. PubMed ID: 27274458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metals recovering from waste printed circuit boards (WPCBs) using molten salts.
    Flandinet L; Tedjar F; Ghetta V; Fouletier J
    J Hazard Mater; 2012 Apr; 213-214():485-90. PubMed ID: 22398030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation.
    Zhou Y; Wu W; Qiu K
    Waste Manag; 2010 Nov; 30(11):2299-304. PubMed ID: 20655190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High temperature investigations on optimising the recovery of copper from waste printed circuit boards.
    Cayumil R; Ikram-Ul-Haq M; Khanna R; Saini R; Mukherjee PS; Mishra BK; Sahajwalla V
    Waste Manag; 2018 Mar; 73():556-565. PubMed ID: 28089398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis of composite plastic waste.
    Cunliffe AM; Jones N; Williams PT
    Environ Technol; 2003 May; 24(5):653-63. PubMed ID: 12803257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy recovery from waste printed circuit boards using microwave pyrolysis: product characteristics, reaction kinetics, and benefits.
    Huang YF; Lo SL
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43274-43282. PubMed ID: 32734544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chemical pretreatment on pyrolysis of non-metallic fraction recycled from waste printed circuit boards.
    Shen Y
    Waste Manag; 2018 Jun; 76():537-543. PubMed ID: 29477651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Health Risk Assessment of a pilot-plant for catalytic pyrolysis of mixed waste plastics for fuel production.
    Paladino O; Moranda A
    J Hazard Mater; 2021 Mar; 405():124222. PubMed ID: 33172677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.
    Auxilio AR; Choo WL; Kohli I; Chakravartula Srivatsa S; Bhattacharya S
    Waste Manag; 2017 Sep; 67():143-154. PubMed ID: 28532621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution.
    Singh E; Kumar A; Mishra R; You S; Singh L; Kumar S; Kumar R
    Bioresour Technol; 2021 Jan; 320(Pt A):124278. PubMed ID: 33099158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis treatment of nonmetal fraction of waste printed circuit boards: Focusing on the fate of bromine.
    Xiong J; Yu S; Wu D; Lü X; Tang J; Wu W; Yao Z
    Waste Manag Res; 2020 Nov; 38(11):1251-1258. PubMed ID: 31902310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation-pyrolysis of fibre waste from a paper recycling mill for the production of fuel products.
    Brown LJ; Collard FX; Gottumukkala LD; Görgens J
    Waste Manag; 2021 Feb; 120():364-372. PubMed ID: 33340818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal.
    Ortuño N; Conesa JA; Moltó J; Font R
    Sci Total Environ; 2014 Nov; 499():27-35. PubMed ID: 25173859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation and reclamation of automotive hybrid structures made of metal and fibre-reinforced plastic.
    Schweizer S; Becker-Staines A; Tröster T
    Waste Manag; 2020 Sep; 115():74-82. PubMed ID: 32731136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study on the heat transfer characteristics of waste printed circuit boards pyrolysis.
    Ma H; Du N; Lin X; Li C; Lai J; Li Z
    Sci Total Environ; 2018 Aug; 633():264-270. PubMed ID: 29574370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.