These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34984213)

  • 1. What do Reinforcement Learning Models Measure? Interpreting Model Parameters in Cognition and Neuroscience.
    Eckstein MK; Wilbrecht L; Collins AGE
    Curr Opin Behav Sci; 2021 Oct; 41():128-137. PubMed ID: 34984213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interpretation of computational model parameters depends on the context.
    Eckstein MK; Master SL; Xia L; Dahl RE; Wilbrecht L; Collins AGE
    Elife; 2022 Nov; 11():. PubMed ID: 36331872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reward Learning as a Potential Mechanism for Improvement in Schizophrenia Spectrum Disorders Following Cognitive Remediation: Protocol for a Clinical, Nonrandomized, Pre-Post Pilot Study.
    Dark F; Galloway G; Gray M; Cella M; De Monte V; Gore-Jones V; Ritchie G
    JMIR Res Protoc; 2024 Jan; 13():e52505. PubMed ID: 38252470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-learning, social cognition and consciousness in brains and machines.
    Langdon A; Botvinick M; Nakahara H; Tanaka K; Matsumoto M; Kanai R
    Neural Netw; 2022 Jan; 145():80-89. PubMed ID: 34735893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning and its connections with neuroscience and psychology.
    Subramanian A; Chitlangia S; Baths V
    Neural Netw; 2022 Jan; 145():271-287. PubMed ID: 34781215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CoBeL-RL: A neuroscience-oriented simulation framework for complex behavior and learning.
    Diekmann N; Vijayabaskaran S; Zeng X; Kappel D; Menezes MC; Cheng S
    Front Neuroinform; 2023; 17():1134405. PubMed ID: 36970657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices.
    Zhang L; Lengersdorff L; Mikus N; Gläscher J; Lamm C
    Soc Cogn Affect Neurosci; 2020 Jul; 15(6):695-707. PubMed ID: 32608484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational evidence for hierarchically structured reinforcement learning in humans.
    Eckstein MK; Collins AGE
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29381-29389. PubMed ID: 33229518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Reinforcement Learning and Its Connections with Brain Neuroscience.
    Fan C; Yao L; Zhang J; Zhen Z; Wu X
    Research (Wash D C); 2023; 6():0064. PubMed ID: 36939448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.
    Gershman SJ; Daw ND
    Annu Rev Psychol; 2017 Jan; 68():101-128. PubMed ID: 27618944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of prefrontal meta control in human-like reinforcement learning.
    Lee JH; Leibo JZ; An SJ; Lee SW
    Front Comput Neurosci; 2022; 16():1060101. PubMed ID: 36618272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning.
    Ziegler S; Pedersen ML; Mowinckel AM; Biele G
    Neurosci Biobehav Rev; 2016 Dec; 71():633-656. PubMed ID: 27608958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explicit and implicit reinforcement learning across the psychosis spectrum.
    Barch DM; Carter CS; Gold JM; Johnson SL; Kring AM; MacDonald AW; Pizzagalli DA; Ragland JD; Silverstein SM; Strauss ME
    J Abnorm Psychol; 2017 Jul; 126(5):694-711. PubMed ID: 28406662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational approaches to modeling gambling behaviour: Opportunities for understanding disordered gambling.
    Hales CA; Clark L; Winstanley CA
    Neurosci Biobehav Rev; 2023 Apr; 147():105083. PubMed ID: 36758827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal Contribution to Probabilistic Feedback Learning: Modeling Observation- and Reinforcement-based Processes.
    Patt VM; Palombo DJ; Esterman M; Verfaellie M
    J Cogn Neurosci; 2022 Jul; 34(8):1429-1446. PubMed ID: 35604353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do real animals account for the passage of time during associative learning?
    Namboodiri VMK
    Behav Neurosci; 2022 Oct; 136(5):383-391. PubMed ID: 35482634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized attention-weighted reinforcement learning.
    Bramlage L; Cortese A
    Neural Netw; 2022 Jan; 145():10-21. PubMed ID: 34710787
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.