These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34984574)
21. Deep Learning Image Reconstruction Algorithm for CCTA: Image Quality Assessment and Clinical Application. Catapano F; Lisi C; Savini G; Olivieri M; Figliozzi S; Caracciolo A; Monti L; Francone M J Comput Assist Tomogr; 2024 Mar-Apr 01; 48(2):217-221. PubMed ID: 37621087 [TBL] [Abstract][Full Text] [Related]
22. Improving lesion conspicuity in abdominal dual-energy CT with deep learning image reconstruction: a prospective study with five readers. Zhong J; Wang L; Shen H; Li J; Lu W; Shi X; Xing Y; Hu Y; Ge X; Ding D; Yan F; Du L; Yao W; Zhang H Eur Radiol; 2023 Aug; 33(8):5331-5343. PubMed ID: 36976337 [TBL] [Abstract][Full Text] [Related]
23. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Jiang B; Li N; Shi X; Zhang S; Li J; de Bock GH; Vliegenthart R; Xie X Radiology; 2022 Apr; 303(1):202-212. PubMed ID: 35040674 [TBL] [Abstract][Full Text] [Related]
24. Impact of deep learning-based image reconstruction on image quality and lesion visibility in renal computed tomography at different doses. Bie Y; Yang S; Li X; Zhao K; Zhang C; Zhong H Quant Imaging Med Surg; 2023 Apr; 13(4):2197-2207. PubMed ID: 37064389 [TBL] [Abstract][Full Text] [Related]
25. The efficacy of low-dose CT with deep learning image reconstruction in the surveillance of incidentally detected pancreatic cystic lesions. Koh S; Lee NK; Kim S; Hong SB; Kim DU; Han SY Abdom Radiol (NY); 2023 Aug; 48(8):2585-2595. PubMed ID: 37204510 [TBL] [Abstract][Full Text] [Related]
26. Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography. De Santis D; Polidori T; Tremamunno G; Rucci C; Piccinni G; Zerunian M; Pugliese L; Del Gaudio A; Guido G; Barbato L; Laghi A; Caruso D Radiol Med; 2023 Apr; 128(4):434-444. PubMed ID: 36847992 [TBL] [Abstract][Full Text] [Related]
28. Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study. Zhong J; Xia Y; Chen Y; Li J; Lu W; Shi X; Feng J; Yan F; Yao W; Zhang H Eur Radiol; 2023 Feb; 33(2):812-824. PubMed ID: 36197579 [TBL] [Abstract][Full Text] [Related]
29. Detectability of Hypoattenuating Liver Lesions with Deep Learning CT Reconstruction: A Phantom and Patient Study. Cao J; Mroueh N; Mercaldo N; Lennartz S; Kongboonvijit S; Srinivas Rao S; Pisuchpen N; Baliyan V; Pierce TT; Anderson MA; Sertic M; Shenoy-Bhangle AS; Kambadakone AR Radiology; 2024 Oct; 313(1):e232749. PubMed ID: 39377679 [TBL] [Abstract][Full Text] [Related]
31. Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy. Benz DC; Benetos G; Rampidis G; von Felten E; Bakula A; Sustar A; Kudura K; Messerli M; Fuchs TA; Gebhard C; Pazhenkottil AP; Kaufmann PA; Buechel RR J Cardiovasc Comput Tomogr; 2020; 14(5):444-451. PubMed ID: 31974008 [TBL] [Abstract][Full Text] [Related]
32. Impact of novel deep learning image reconstruction algorithm on diagnosis of contrast-enhanced liver computed tomography imaging: Comparing to adaptive statistical iterative reconstruction algorithm. Yang S; Bie Y; Pang G; Li X; Zhao K; Zhang C; Zhong H J Xray Sci Technol; 2021; 29(6):1009-1018. PubMed ID: 34569983 [TBL] [Abstract][Full Text] [Related]
33. The value of a deep learning image reconstruction algorithm in whole-brain computed tomography perfusion in patients with acute ischemic stroke. Lei L; Zhou Y; Guo X; Wang L; Zhao X; Wang H; Ma J; Yue S Quant Imaging Med Surg; 2023 Dec; 13(12):8173-8189. PubMed ID: 38106310 [TBL] [Abstract][Full Text] [Related]
34. Improved overall image quality in low-dose dual-energy computed tomography enterography using deep-learning image reconstruction. Lin X; Gao Y; Zhu C; Song J; Liu L; Li J; Wu X Abdom Radiol (NY); 2024 Sep; 49(9):2979-2987. PubMed ID: 38480547 [TBL] [Abstract][Full Text] [Related]
35. Deep-learning image reconstruction for image quality evaluation and accurate bone mineral density measurement on quantitative CT: A phantom-patient study. Li Y; Jiang Y; Yu X; Ren B; Wang C; Chen S; Ma D; Su D; Liu H; Ren X; Yang X; Gao J; Wu Y Front Endocrinol (Lausanne); 2022; 13():884306. PubMed ID: 36034436 [TBL] [Abstract][Full Text] [Related]
36. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Hata A; Yanagawa M; Yoshida Y; Miyata T; Kikuchi N; Honda O; Tomiyama N Clin Radiol; 2021 Feb; 76(2):155.e15-155.e23. PubMed ID: 33220941 [TBL] [Abstract][Full Text] [Related]
37. Performance evaluation of deep learning image reconstruction algorithm for dual-energy spectral CT imaging: A phantom study. Li H; Li Z; Gao S; Hu J; Yang Z; Peng Y; Sun J J Xray Sci Technol; 2024; 32(3):513-528. PubMed ID: 38393883 [TBL] [Abstract][Full Text] [Related]
38. Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques. Nam JG; Ahn C; Choi H; Hong W; Park J; Kim JH; Goo JM Eur Radiol; 2021 Jul; 31(7):5139-5147. PubMed ID: 33415436 [TBL] [Abstract][Full Text] [Related]
39. Diagnostic performance and image quality of deep learning image reconstruction (DLIR) on unenhanced low-dose abdominal CT for urolithiasis. Delabie A; Bouzerar R; Pichois R; Desdoit X; Vial J; Renard C Acta Radiol; 2022 Sep; 63(9):1283-1292. PubMed ID: 34365803 [TBL] [Abstract][Full Text] [Related]
40. Image quality of coronary CT angiography at ultra low tube voltage reconstructed with a deep-learning image reconstruction algorithm in patients of different weight. Zhu L; Ha R; Machida H; Shi X; Wang F; Chen K; Chen D; Cao Y; Shen Y; Yang L Quant Imaging Med Surg; 2023 Jun; 13(6):3891-3901. PubMed ID: 37284103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]