BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34984613)

  • 1. From waste tire to high value-added chemicals: an analytical Py-GC/TOF-MS study.
    Wang ZC; Duan PG; Wang K
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72117-72125. PubMed ID: 34984613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic upcycling of post-consumer multilayered plastic packaging wastes for the selective production of monoaromatic hydrocarbons.
    Pal SK; Prabhudesai VS; Vinu R
    J Environ Manage; 2024 Feb; 351():119630. PubMed ID: 38043308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluidised bed catalytic pyrolysis of scrap tyres: influence of catalyst:tyre ratio and catalyst temperature.
    Williams PT; Brindle AJ
    Waste Manag Res; 2002 Dec; 20(6):546-55. PubMed ID: 12549667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of latex gloves in the presence of Y-zeolite.
    Hall WJ; Zakaria N; Williams PT
    Waste Manag; 2009 Feb; 29(2):797-803. PubMed ID: 18789675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts.
    Azócar BS; Vargas PO; Campos C; Medina F; Arteaga-Pérez LE
    Data Brief; 2022 Feb; 40():107745. PubMed ID: 35005140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of light olefins and monocyclic aromatic hydrocarbons from the pyrolysis of waste plastic straws over high-silica zeolite-based catalysts.
    Valizadeh B; Valizadeh S; Kim H; Choi YJ; Seo MW; Yoo KS; Lin KA; Hussain M; Park YK
    Environ Res; 2024 Mar; 245():118076. PubMed ID: 38160977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char.
    Pan Y; Sima J; Wang X; Zhou Y; Huang Q
    Waste Manag; 2021 Jul; 131():214-225. PubMed ID: 34167041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation Mechanism of Monocyclic Aromatic Hydrocarbons during Pyrolysis of Styrene Butadiene Rubber in Waste Passenger Car Tires.
    Li J; Zheng D; Yao Z; Wang S; Xu R; Deng S; Chen B; Wang J
    ACS Omega; 2022 Nov; 7(47):42890-42900. PubMed ID: 36467943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences and mechanisms of pyrolytic conditions on recycling BTX products from passenger car waste tires.
    Zheng D; Cheng J; Wang X; Yu G; Xu R; Dai C; Liu N; Wang N; Chen B
    Waste Manag; 2023 Sep; 169():196-207. PubMed ID: 37453307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluidised bed pyrolysis and catalytic pyrolysis of scrap tyres.
    Williams PT; Brindle AJ
    Environ Technol; 2003 Jul; 24(7):921-9. PubMed ID: 12916844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis of scrap tyres with zeolite USY.
    Shen B; Wu C; Wang R; Guo B; Liang C
    J Hazard Mater; 2006 Sep; 137(2):1065-73. PubMed ID: 16704900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis.
    Lee SB; Lee J; Tsang YF; Kim YM; Jae J; Jung SC; Park YK
    Environ Pollut; 2021 Aug; 283():117060. PubMed ID: 33852997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of CaO on the thermal kinetics and formation mechanism of high value-added products during waste tire pyrolysis.
    Chen Q; Xu F; Zong P; Song F; Wang B; Tian Y; Wu F; Zhao X; Qiao Y
    J Hazard Mater; 2022 Aug; 436():129220. PubMed ID: 35739742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of alkali-treated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk.
    Li Z; Zhong Z; Zhang B; Wang W; Seufitelli GVS; Resende FLP
    Sci Total Environ; 2020 Feb; 703():134605. PubMed ID: 31731164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.
    Miandad R; Barakat MA; Rehan M; Aburiazaiza AS; Ismail IMI; Nizami AS
    Waste Manag; 2017 Nov; 69():66-78. PubMed ID: 28882427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flash hydropyrolysis of cotton stalks: Role of temperature, metal loading, pressure for enhancement of aromatics.
    Jindal M; Kumar A; Kaur R; Chandra Sekhar Palla V; Bhaskar T
    Bioresour Technol; 2022 May; 351():127047. PubMed ID: 35337994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study.
    Zhang B; Zhong Z; Min M; Ding K; Xie Q; Ruan R
    Bioresour Technol; 2015; 189():30-35. PubMed ID: 25864028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products.
    Ghorbannezhad P; Park S; Onwudili JA
    Waste Manag; 2020 Feb; 102():909-918. PubMed ID: 31841983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium formate assisted catalytic pyrolysis of pine for enhanced production of monocyclic aromatic hydrocarbons over bimetal-modified HZSM-5.
    Li K; Zhang G; Wang ZX; Hu B; Lu Q
    Bioresour Technol; 2020 Nov; 315():123805. PubMed ID: 32668348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave catalytic co-pyrolysis of waste cooking oil and low-density polyethylene to produce monocyclic aromatic hydrocarbons: Effect of different catalysts and pyrolysis parameters.
    Zeng Y; Wang Y; Liu Y; Dai L; Wu Q; Xia M; Zhang S; Ke L; Zou R; Ruan R
    Sci Total Environ; 2022 Feb; 809():152182. PubMed ID: 34883177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.