These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34984818)

  • 1. Recent Advances in Synthetic and Natural Biomaterials-Based Therapy for Bone Defects.
    Alvarez Echazú MI; Perna O; Olivetti CE; Antezana PE; Municoy S; Tuttolomondo MV; Galdopórpora JM; Alvarez GS; Olmedo DG; Desimone MF
    Macromol Biosci; 2022 Apr; 22(4):e2100383. PubMed ID: 34984818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Existing and Novel Biomaterials for Bone Tissue Engineering.
    Dec P; Modrzejewski A; Pawlik A
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterial functionalization with triple-helical peptides for tissue engineering.
    Malcor JD; Mallein-Gerin F
    Acta Biomater; 2022 Aug; 148():1-21. PubMed ID: 35675889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Biomaterials for the Treatment of Bone Defects.
    Zhang LY; Bi Q; Zhao C; Chen JY; Cai MH; Chen XY
    Organogenesis; 2020 Oct; 16(4):113-125. PubMed ID: 32799735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Use of Fibers in Bone Tissue Engineering.
    Petre DG; Leeuwenburgh SCG
    Tissue Eng Part B Rev; 2022 Feb; 28(1):141-159. PubMed ID: 33375900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials.
    Zhang XY; Fang G; Leeflang S; Zadpoor AA; Zhou J
    Acta Biomater; 2019 Jan; 84():437-452. PubMed ID: 30537537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial biomaterials in bone tissue engineering.
    Chen ZY; Gao S; Zhang YW; Zhou RB; Zhou F
    J Mater Chem B; 2021 Mar; 9(11):2594-2612. PubMed ID: 33666632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of Nano-Hydroxyapatite/Beta-Tricalcium Phosphate and Xenogenic Hydroxyapatite on Bone Regeneration in Rat Calvarial Defects: Histomorphometric, Immunohistochemical and Ultrastructural Analysis.
    da Silva Brum I; Frigo L; Goncalo Pinto Dos Santos P; Nelson Elias C; da Fonseca GAMD; Jose de Carvalho J
    Int J Nanomedicine; 2021; 16():3473-3485. PubMed ID: 34040373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering.
    Li Y; Xu Z; Wang J; Pei X; Chen J; Wan Q
    Int J Biol Macromol; 2023 Mar; 230():123246. PubMed ID: 36649862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review.
    Siddiqui N; Kishori B; Rao S; Anjum M; Hemanth V; Das S; Jabbari E
    Mol Biotechnol; 2021 May; 63(5):363-388. PubMed ID: 33689142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterial-mediated strategies targeting vascularization for bone repair.
    García JR; García AJ
    Drug Deliv Transl Res; 2016 Apr; 6(2):77-95. PubMed ID: 26014967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures.
    Spece H; Basgul C; Andrews CE; MacDonald DW; Taheri ML; Kurtz SM
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1436-1454. PubMed ID: 33484102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous Phosphate-Based Glass Microspheres Show Biocompatibility, Tissue Infiltration, and Osteogenic Onset in an Ovine Bone Defect Model.
    McLaren JS; Macri-Pellizzeri L; Hossain KMZ; Patel U; Grant DM; Scammell BE; Ahmed I; Sottile V
    ACS Appl Mater Interfaces; 2019 May; 11(17):15436-15446. PubMed ID: 30990301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of translational research in bone graft biomaterials.
    Kumawat VS; Bandyopadhyay-Ghosh S; Ghosh SB
    J Biomater Sci Polym Ed; 2023 Mar; 34(4):497-540. PubMed ID: 36124544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells.
    Malec K; Góralska J; Hubalewska-Mazgaj M; Głowacz P; Jarosz M; Brzewski P; Sulka GD; Jaskuła M; Wybrańska I
    Int J Nanomedicine; 2016; 11():5349-5360. PubMed ID: 27789947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.