These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3498511)

  • 1. Nuclear Overhauser effect studies of the conformations of MgATP bound to the active and secondary sites of muscle pyruvate kinase.
    Rosevear PR; Fox TL; Mildvan AS
    Biochemistry; 1987 Jun; 26(12):3487-93. PubMed ID: 3498511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear overhauser effect studies on the conformation of magnesium adenosine 5'-triphosphate bound to rabbit muscle creatine kinase.
    Rosevear PR; Powers VM; Dowhan D; Mildvan AS; Kenyon GL
    Biochemistry; 1987 Aug; 26(17):5338-44. PubMed ID: 3499934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR studies of the MgATP binding site of adenylate kinase and of a 45-residue peptide fragment of the enzyme.
    Fry DC; Kuby SA; Mildvan AS
    Biochemistry; 1985 Aug; 24(17):4680-94. PubMed ID: 2998457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional transferred nuclear Overhauser effect spectroscopy study of the confirmation of MgATP bound at the active and ancillary sites of rabbit muscle pyruvate kinase.
    Jarori GK; Murali N; Rao BD
    Biochemistry; 1994 Jun; 33(22):6784-91. PubMed ID: 8204612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR studies of conformations and interactions of substrates and ribonucleotide templates bound to the large fragment of DNA polymerase I.
    Ferrin LJ; Mildvan AS
    Biochemistry; 1986 Sep; 25(18):5131-45. PubMed ID: 3533145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR studies of the AMP-binding site and mechanism of adenylate kinase.
    Fry DC; Kuby SA; Mildvan AS
    Biochemistry; 1987 Mar; 26(6):1645-55. PubMed ID: 3036205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear Overhauser effect studies of the conformations and binding site environments of deoxynucleoside triphosphate substrates bound to DNA polymerase I and its large fragment.
    Ferrin LJ; Mildvan AS
    Biochemistry; 1985 Nov; 24(24):6904-13. PubMed ID: 3907705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear Overhauser effect studies of the conformation of Co(NH3)4ATP bound to kidney Na,K-ATPase.
    Stewart JM; Jørgensen PL; Grisham CM
    Biochemistry; 1989 May; 28(11):4695-701. PubMed ID: 2548590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation of MgATP bound to nucleotidyl and phosphoryl transfer enzymes 1H-transferred NOE measurements on complexes of methionyl tRNA synthetase and pyruvate kinase.
    Landy SB; Ray BD; Plateau P; Lipkowitz KB; Rao BD
    Eur J Biochem; 1992 Apr; 205(1):59-69. PubMed ID: 1555604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic relaxation studies of the conformation of adenosine 5'-triphosphate on pyruvate kinase from rabbit muscle.
    Sloan DL; Mildvan AS
    J Biol Chem; 1976 Apr; 251(8):2412-20. PubMed ID: 177414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H nuclear magnetic resonance studies of the conformation of an ATP analogue at the active site of Na,K-ATPase from kidney medulla.
    Stewart JM; Grisham CM
    Biochemistry; 1988 Jun; 27(13):4840-8. PubMed ID: 2844241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 7Li, 31P, and 1H NMR studies of interactions between ATP, monovalent cations, and divalent cation sites on rabbit muscle pyruvate kinase.
    Van Divender JM; Grisham CM
    J Biol Chem; 1985 Nov; 260(26):14060-9. PubMed ID: 2997192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in creatine kinase complexes: effects due to weak nonspecific binding.
    Murali N; Jarori GK; Landy SB; Rao BD
    Biochemistry; 1993 Nov; 32(47):12941-8. PubMed ID: 8251518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformations and arrangement of substrates at active sites of ATP-utilizing enzymes.
    Mildvan AS
    Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):65-74. PubMed ID: 6115425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear Overhauser effect studies on the conformations of Mg(alpha,beta-methylene)ATP bound to Escherichia coli methionyl-tRNA synthetase.
    Williams JS; Rosevear PR
    J Biol Chem; 1991 Feb; 266(4):2089-98. PubMed ID: 1989972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR studies of the active site of DNA polymerase I and of a 50-residue peptide fragment of the enzyme.
    Mullen GP; Vaughn JB; Shenbagamurthi P; Mildvan AS
    Biochem Pharmacol; 1990 Jul; 40(1):69-81. PubMed ID: 2196883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in arginine kinase complexes.
    Murali N; Jarori GK; Rao BD
    Biochemistry; 1994 Nov; 33(47):14227-36. PubMed ID: 7947834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance studies of the nucleotide binding sites of porcine adenylate kinase.
    Smith GM; Mildvan AS
    Biochemistry; 1982 Nov; 21(24):6119-23. PubMed ID: 6295455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus-31 nuclear magnetic resonance studies of the conformation of an adenosine 5'-triphosphate analogue at the active site of (Na+ + K+)-ATPase from kidney medulla.
    Klevickis C; Grisham CM
    Biochemistry; 1982 Dec; 21(26):6979-84. PubMed ID: 6297542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance studies of the interaction of Co2+ and phosphoenolpyruvate with pyruvate kinase.
    Melamud E; Mildvan AS
    J Biol Chem; 1975 Oct; 250(20):8193-201. PubMed ID: 1236850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.