BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34985254)

  • 1. Multiscale Janus Surface Structure of
    Mohd G; Majid K; Lone S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4690-4698. PubMed ID: 34985254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic Role of Nano-/Microscale Structures of the
    Mohd G; Majid K; Lone S
    Langmuir; 2023 May; 39(17):6178-6187. PubMed ID: 37071560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Banana Leaf Surface's Janus Wettability Transition from the Wenzel State to Cassie-Baxter State and the Underlying Mechanism.
    Jiang Y; Yang Z; Jiang T; Shen D; Duan J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscale mechanism of microstructure, micromorphology and Janus wettability of the banana leaf surface.
    Jiang Y; Duan J; Jiang T; Yang Z
    Micron; 2021 Jul; 146():103073. PubMed ID: 33932752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age.
    Fernández V; Sancho-Knapik D; Guzmán P; Peguero-Pina JJ; Gil L; Karabourniotis G; Khayet M; Fasseas C; Heredia-Guerrero JA; Heredia A; Gil-Pelegrín E
    Plant Physiol; 2014 Sep; 166(1):168-80. PubMed ID: 24913938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.
    Wang H; Shi H; Li Y; Wang Y
    PLoS One; 2014; 9(9):e107062. PubMed ID: 25198355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printing-assisted fabrication of hierarchically structured biomimetic surfaces with dual-wettability for water harvesting.
    Choi Y; Baek K; So H
    Sci Rep; 2023 Jul; 13(1):10691. PubMed ID: 37393316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf rolling dynamics for atmospheric moisture harvesting in wheat plant as an adaptation to arid environments.
    Merrium S; Ali Z; Tahir MHN; Habib-Ur-Rahman M; Hakeem S
    Environ Sci Pollut Res Int; 2022 Jul; 29(32):48995-49006. PubMed ID: 35212894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface morphology and microstructure of Bauhinia variegata L. flowers and leaves.
    Xu Y
    Micron; 2024 Feb; 177():103575. PubMed ID: 38086225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications.
    Zhang S; Huang J; Chen Z; Lai Y
    Small; 2017 Jan; 13(3):. PubMed ID: 27935211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method.
    Gao Y; Guo R; Fan R; Liu Z; Kong W; Zhang P; Du FP
    Pest Manag Sci; 2018 Aug; 74(8):1804-1809. PubMed ID: 29389059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of leaf trichomes and their influence on surface wettability of Salsola ferganica, an annual halophyte in the desert.
    Liu Y; Hanati A; Lan H
    Physiol Plant; 2023; 175(3):e13905. PubMed ID: 37005220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotemplate Replication of Novel
    Foday EH; Sesay T; Koroma EB; Kanneh AAGS; Chineche EB; Jalloh AY; Koroma JM
    Biomimetics (Basel); 2022 Sep; 7(4):. PubMed ID: 36278704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peanut leaf inspired multifunctional surfaces.
    Yang S; Ju J; Qiu Y; He Y; Wang X; Dou S; Liu K; Jiang L
    Small; 2014 Jan; 10(2):294-9. PubMed ID: 23908145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes.
    Puente DW; Baur P
    Pest Manag Sci; 2011 Jul; 67(7):798-806. PubMed ID: 21413140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic Plant Leaves: The Variation in Surface Morphologies and Wettability during the Vegetation Period.
    Gou X; Guo Z
    Langmuir; 2019 Jan; 35(4):1047-1053. PubMed ID: 30621395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimuli-responsive surfaces for switchable wettability and adhesion.
    Li C; Li M; Ni Z; Guan Q; Blackman BRK; Saiz E
    J R Soc Interface; 2021 Jun; 18(179):20210162. PubMed ID: 34129792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beetle-Inspired Dual-Directional Janus Pumps with Interfacial Asymmetric Wettability for Enhancing Fog Harvesting.
    Wu J; Yan Z; Yan Y; Li C; Dai J
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49338-49351. PubMed ID: 36268797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing bioinspired surfaces for water collection from fog.
    Gurera D; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2019 Feb; 377(2138):20180269. PubMed ID: 30967063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf wettability decreases along an extreme altitudinal gradient.
    Aryal B; Neuner G
    Oecologia; 2010 Jan; 162(1):1-9. PubMed ID: 19727830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.