These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34985279)
61. Design of Activatable NIR-II Molecular Probe for In Vivo Elucidation of Disease-Related Viscosity Variations. Dou K; Huang W; Xiang Y; Li S; Liu Z Anal Chem; 2020 Mar; 92(6):4177-4181. PubMed ID: 32126756 [TBL] [Abstract][Full Text] [Related]
62. Enzyme-responsive turn-on nanoprobes for Du X; Wang W; Wu C; Jia B; Li W; Qiu L; Jiang P; Wang J; Li YQ J Mater Chem B; 2020 Aug; 8(33):7403-7412. PubMed ID: 32658955 [TBL] [Abstract][Full Text] [Related]
63. A targeted activatable NIR-II nanoprobe for positive visualization of anastomotic thrombosis and sensitive identification of fresh fibrinolytic thrombus. Yuan Y; Diao S; Zhang D; Yi W; Qi B; Hu X; Xie C; Fan Q; Yu A Mater Today Bio; 2023 Aug; 21():100697. PubMed ID: 37346779 [TBL] [Abstract][Full Text] [Related]
64. Activatable BODIPY-chromene NIR-II probes with small spectral crosstalk enable high-contrast Zhang L; Yan C; Zhang Y; Ma D; Huang J; Zhao Z; Tao Y; Liu C; Li J; Zhu WH; Guo Z Chem Commun (Camb); 2023 Jul; 59(54):8388-8391. PubMed ID: 37305995 [TBL] [Abstract][Full Text] [Related]
65. Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence. Yang Y; Fan X; Li L; Yang Y; Nuernisha A; Xue D; He C; Qian J; Hu Q; Chen H; Liu J; Huang W ACS Nano; 2020 Feb; 14(2):2509-2521. PubMed ID: 32022539 [TBL] [Abstract][Full Text] [Related]
66. Aggregation-induced emission fluorophores based on strong electron-acceptor 2,2'-(anthracene-9,10-diylidene) dimalononitrile for biological imaging in the NIR-II window. Yang Z; Fan X; Liu X; Chu Y; Zhang Z; Hu Y; Lin H; Qian J; Hua J Chem Commun (Camb); 2021 Mar; 57(25):3099-3102. PubMed ID: 33625440 [TBL] [Abstract][Full Text] [Related]
67. Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity. Wang J; Lv Y; Wan W; Wang X; Li AD; Tian Z ACS Appl Mater Interfaces; 2016 Feb; 8(7):4399-406. PubMed ID: 26859429 [TBL] [Abstract][Full Text] [Related]
68. Small molecular interaction-based fluorescence enhancement for second near-infrared imaging. Zian W; Yang L; Peng W; Yifei J; Min J Nanomedicine (Lond); 2020 Jan; 15(2):115-129. PubMed ID: 31903846 [No Abstract] [Full Text] [Related]
69. NIR-II Chemiluminescence Molecular Sensor for In Vivo High-Contrast Inflammation Imaging. Yang Y; Wang S; Lu L; Zhang Q; Yu P; Fan Y; Zhang F Angew Chem Int Ed Engl; 2020 Oct; 59(42):18380-18385. PubMed ID: 32592429 [TBL] [Abstract][Full Text] [Related]
70. Recent Advances of Organic Near-Infrared II Fluorophores in Optical Properties and Imaging Functions. Yu H; Ji M Mol Imaging Biol; 2021 Apr; 23(2):160-172. PubMed ID: 33030708 [TBL] [Abstract][Full Text] [Related]
71. Near Infrared Graphene Quantum Dots-Based Two-Photon Nanoprobe for Direct Bioimaging of Endogenous Ascorbic Acid in Living Cells. Feng LL; Wu YX; Zhang DL; Hu XX; Zhang J; Wang P; Song ZL; Zhang XB; Tan W Anal Chem; 2017 Apr; 89(7):4077-4084. PubMed ID: 28281746 [TBL] [Abstract][Full Text] [Related]
72. Targeted Myocardial Hypoxia Imaging Using a Nitroreductase-Activatable Near-Infrared Fluorescent Nanoprobe. Fan Y; Lu M; Yu XA; He M; Zhang Y; Ma XN; Kou J; Yu BY; Tian J Anal Chem; 2019 May; 91(10):6585-6592. PubMed ID: 30994329 [TBL] [Abstract][Full Text] [Related]
73. Molecular engineering of a high quantum yield NIR-II molecular fluorophore with aggregation-induced emission (AIE) characteristics for in vivo imaging. Xu P; Kang F; Yang W; Zhang M; Dang R; Jiang P; Wang J Nanoscale; 2020 Feb; 12(8):5084-5090. PubMed ID: 32068224 [TBL] [Abstract][Full Text] [Related]
74. Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging. Yuan L; Lin W; Chen H Biomaterials; 2013 Dec; 34(37):9566-71. PubMed ID: 24054843 [TBL] [Abstract][Full Text] [Related]
75. NIR-II bioimaging of small organic molecule. Su Y; Yu B; Wang S; Cong H; Shen Y Biomaterials; 2021 Apr; 271():120717. PubMed ID: 33610960 [TBL] [Abstract][Full Text] [Related]
76. Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities. Biffi S; Petrizza L; Garrovo C; Rampazzo E; Andolfi L; Giustetto P; Nikolov I; Kurdi G; Danailov MB; Zauli G; Secchiero P; Prodi L Int J Nanomedicine; 2016; 11():4865-4874. PubMed ID: 27703352 [TBL] [Abstract][Full Text] [Related]
77. [Application of organic fluorescent probe-assisted near infrared fluorescence imaging in cervical cancer diagnosis]. Zhu L; Zhang L; Zhou M; Alifu N Sheng Wu Gong Cheng Xue Bao; 2021 Aug; 37(8):2678-2687. PubMed ID: 34472288 [TBL] [Abstract][Full Text] [Related]
78. Molecular Engineering of an Organic NIR-II Fluorophore with Aggregation-Induced Emission Characteristics for In Vivo Imaging. Wu W; Yang Y; Yang Y; Yang Y; Zhang K; Guo L; Ge H; Chen X; Liu J; Feng H Small; 2019 May; 15(20):e1805549. PubMed ID: 30925013 [TBL] [Abstract][Full Text] [Related]
79. Non-invasive In Vivo Fluorescence Optical Imaging of Inflammatory MMP Activity Using an Activatable Fluorescent Imaging Agent. Schwenck J; Maier FC; Kneilling M; Wiehr S; Fuchs K J Vis Exp; 2017 May; (123):. PubMed ID: 28518078 [TBL] [Abstract][Full Text] [Related]
80. An activatable probe for detection and therapy of food-additive-related hepatic injury via NIR-II fluorescence/optoacoustic imaging and biomarker-triggered drug release. Zeng C; Ouyang J; Sun L; Zeng Z; Tan Y; Zeng F; Wu S Anal Chim Acta; 2022 May; 1208():339831. PubMed ID: 35525589 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]