These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34985413)

  • 1. The role of action potential changes in depolarization-induced failure of excitation contraction coupling in mouse skeletal muscle.
    Wang X; Nawaz M; DuPont C; Myers JH; Burke SR; Bannister RA; Foy BD; Voss AA; Rich MM
    Elife; 2022 Jan; 11():. PubMed ID: 34985413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage sensor movements of Ca
    Banks Q; Bibollet H; Contreras M; Bennett DF; Bannister RA; Schneider MF; Hernández-Ochoa EO
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34583989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cannabinoid signalling inhibits sarcoplasmic Ca
    Oláh T; Bodnár D; Tóth A; Vincze J; Fodor J; Reischl B; Kovács A; Ruzsnavszky O; Dienes B; Szentesi P; Friedrich O; Csernoch L
    J Physiol; 2016 Dec; 594(24):7381-7398. PubMed ID: 27641745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis?
    Hernández-Ochoa EO; Schneider MF
    Skelet Muscle; 2018 Jul; 8(1):22. PubMed ID: 30025545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage sensor current, SR Ca
    Bibollet H; Nguyen EL; Miranda DR; Ward CW; Voss AA; Schneider MF; Hernández-Ochoa EO
    Physiol Rep; 2023 May; 11(9):e15675. PubMed ID: 37147904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between resting conductances, excitability, and t-system ionic homeostasis in skeletal muscle.
    Fraser JA; Huang CL; Pedersen TH
    J Gen Physiol; 2011 Jul; 138(1):95-116. PubMed ID: 21670205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation-contraction coupling in skeletal muscle fibers from adult domestic honeybee.
    Collet C
    Pflugers Arch; 2009 Jul; 458(3):601-12. PubMed ID: 19198873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preserved Ca
    Jaque-Fernandez F; Beaulant A; Berthier C; Monteiro L; Allard B; Casas M; Rieusset J; Jacquemond V
    Diabetologia; 2020 Nov; 63(11):2471-2481. PubMed ID: 32840676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of carvedilol on atrial excitation-contraction coupling, Ca
    Martinez-Hernandez E; Blatter LA
    Am J Physiol Heart Circ Physiol; 2020 May; 318(5):H1245-H1255. PubMed ID: 32275472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute Elevated Glucose Promotes Abnormal Action Potential-Induced Ca
    Hernández-Ochoa EO; Banks Q; Schneider MF
    J Diabetes Res; 2017; 2017():1509048. PubMed ID: 28835899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle.
    Prosser BL; Hernández-Ochoa EO; Lovering RM; Andronache Z; Zimmer DB; Melzer W; Schneider MF
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C891-902. PubMed ID: 20686070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered Ca(2+) signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington's disease.
    Braubach P; Orynbayev M; Andronache Z; Hering T; Landwehrmeyer GB; Lindenberg KS; Melzer W
    J Gen Physiol; 2014 Nov; 144(5):393-413. PubMed ID: 25348412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular mechanisms of ventricular arrhythmias in a mouse model of Timothy syndrome (long QT syndrome 8).
    Drum BM; Dixon RE; Yuan C; Cheng EP; Santana LF
    J Mol Cell Cardiol; 2014 Jan; 66():63-71. PubMed ID: 24215710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired excitation-contraction coupling in muscle fibres from the dynamin2
    Kutchukian C; Szentesi P; Allard B; Trochet D; Beuvin M; Berthier C; Tourneur Y; Guicheney P; Csernoch L; Bitoun M; Jacquemond V
    J Physiol; 2017 Dec; 595(24):7369-7382. PubMed ID: 29071728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular [Na(+)] modulates synergy between Na(+)/Ca (2+) exchanger and L-type Ca (2+) current in cardiac excitation-contraction coupling during action potentials.
    Ramirez RJ; Sah R; Liu J; Rose RA; Backx PH
    Basic Res Cardiol; 2011 Nov; 106(6):967-77. PubMed ID: 21779914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of the relationships between subthreshold electrical properties and excitability in skeletal muscle.
    Pedersen TH; L-H Huang C; Fraser JA
    J Gen Physiol; 2011 Jul; 138(1):73-93. PubMed ID: 21670208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of membrane depolarization and changes in extracellular [K(+)] on the Ca (2+) transients of fast skeletal muscle fibers. Implications for muscle fatigue.
    Quiñonez M; González F; Morgado-Valle C; DiFranco M
    J Muscle Res Cell Motil; 2010 Jul; 31(1):13-33. PubMed ID: 20049631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in action potential profile enhance excitation-contraction coupling in rat cardiac myocytes.
    Sah R; Ramirez RJ; Kaprielian R; Backx PH
    J Physiol; 2001 May; 533(Pt 1):201-14. PubMed ID: 11351028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal and transversal propagation of excitation along the tubular system of rat fast-twitch muscle fibres studied by high speed confocal microscopy.
    Edwards JN; Cully TR; Shannon TR; Stephenson DG; Launikonis BS
    J Physiol; 2012 Feb; 590(3):475-92. PubMed ID: 22155929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.