These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34985416)

  • 41. Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions.
    Day RW; Mankin MN; Lieber CM
    Nano Lett; 2016 Apr; 16(4):2830-6. PubMed ID: 26929996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct detection of hole gas in Ge-Si core-shell nanowires by enhanced Raman scattering.
    Zhang S; Lopez FJ; Hyun JK; Lauhon LJ
    Nano Lett; 2010 Nov; 10(11):4483-7. PubMed ID: 20973575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Strain and Hole Gas Induced Raman Shifts in Ge-Si(x)Ge(1-x) Core-Shell Nanowires Using Tip-Enhanced Raman Spectroscopy.
    Zhang Z; Dillen DC; Tutuc E; Yu ET
    Nano Lett; 2015 Jul; 15(7):4303-10. PubMed ID: 26053999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cost-Effective Fabrication of Fractal Silicon Nanowire Arrays.
    Leonardi AA; Lo Faro MJ; Miritello M; Musumeci P; Priolo F; Fazio B; Irrera A
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443803
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Radial modulation doping in core-shell nanowires.
    Dillen DC; Kim K; Liu ES; Tutuc E
    Nat Nanotechnol; 2014 Feb; 9(2):116-20. PubMed ID: 24441982
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge-Si Core-Shell Nanowires.
    Conesa-Boj S; Li A; Koelling S; Brauns M; Ridderbos J; Nguyen TT; Verheijen MA; Koenraad PM; Zwanenburg FA; Bakkers EP
    Nano Lett; 2017 Apr; 17(4):2259-2264. PubMed ID: 28231017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed.
    Hu Y; Xiang J; Liang G; Yan H; Lieber CM
    Nano Lett; 2008 Mar; 8(3):925-30. PubMed ID: 18251518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures.
    Zeng Y; Xing H; Fang Y; Huang Y; Lu A; Chen X
    Materials (Basel); 2014 Oct; 7(11):7276-7288. PubMed ID: 28788245
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strategy of All-Inorganic Cs
    Liang W; Shi Z; Li Y; Ma J; Yin S; Chen X; Wu D; Tian Y; Tian Y; Zhang Y; Li X; Shan C
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37363-37374. PubMed ID: 32814386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrical properties and magnetic response of cobalt germanosilicide nanowires.
    Tsai CI; Wang CY; Tang J; Hung MH; Wang KL; Chen LJ
    ACS Nano; 2011 Dec; 5(12):9552-8. PubMed ID: 22067017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Resistive switching memory characteristics of Ge/GeOx nanowires and evidence of oxygen ion migration.
    Prakash A; Maikap S; Rahaman SZ; Majumdar S; Manna S; Ray SK
    Nanoscale Res Lett; 2013 May; 8(1):220. PubMed ID: 23657016
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidation Mechanism of Si
    Bae JM; Jeong KS; Lee WJ; Baik M; Park J; Cho MH
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37411-37418. PubMed ID: 28984123
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural and photoluminescence studies on catalytic growth of silicon/zinc oxide heterostructure nanowires.
    Chong SK; Dee CF; Abdul Rahman S
    Nanoscale Res Lett; 2013 Apr; 8(1):174. PubMed ID: 23590803
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Shell Growth and Doping Conditions of Core-Shell Homojunction Si Nanowire Solar Cells.
    Dutta M; Fukata N
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4339-46. PubMed ID: 26369046
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large reduction in thermal conductivity for SiGe alloy nanowire wrapped with a Ge nanoparticle-embedded SiO2 shell.
    Lee JW; Lee J; Jung SH; Jang Y; Choi BL; Yang CW; Whang D; Lee EK
    Nanotechnology; 2016 Jul; 27(30):305703. PubMed ID: 27306569
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors.
    Morkötter S; Jeon N; Rudolph D; Loitsch B; Spirkoska D; Hoffmann E; Döblinger M; Matich S; Finley JJ; Lauhon LJ; Abstreiter G; Koblmüller G
    Nano Lett; 2015 May; 15(5):3295-302. PubMed ID: 25923841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of surface chemical structure on the mechanical properties of Si(1-x)Ge(x) nanowires.
    Ma JW; Lee WJ; Bae JM; Jeong KS; Kang YS; Cho MH; Seo JH; Ahn JP; Chung KB; Song JY
    Nano Lett; 2013 Mar; 13(3):1118-25. PubMed ID: 23421739
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembled growth and luminescence of crystalline Si/SiOx core-shell nanowires.
    Kim S; Kim CO; Shin DH; Hong SH; Kim MC; Kim J; Choi SH; Kim T; Elliman RG; Kim YM
    Nanotechnology; 2010 May; 21(20):205601. PubMed ID: 20413841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.