These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34985590)

  • 1. Risky interpretations across the length scales: continuum vs. discrete models for soft tissue mechanobiology.
    Stracuzzi A; Britt BR; Mazza E; Ehret AE
    Biomech Model Mechanobiol; 2022 Apr; 21(2):433-454. PubMed ID: 34985590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the mechanical properties of human skin: towards a 3D discrete fibre model.
    Jor JW; Nash MP; Nielsen PM; Hunter PJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6641-4. PubMed ID: 18003548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations.
    Zarei V; Zhang S; Winkelstein BA; Barocas VH
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 28978743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior.
    Chandran PL; Barocas VH
    J Biomech Eng; 2006 Apr; 128(2):259-70. PubMed ID: 16524339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microstructurally-based, multi-scale, continuum-mechanical model for the passive behaviour of skeletal muscle tissue.
    Bleiler C; Ponte Castañeda P; Röhrle O
    J Mech Behav Biomed Mater; 2019 Sep; 97():171-186. PubMed ID: 31125890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational model of damage-induced growth in soft biological tissues considering the mechanobiology of healing.
    Gierig M; Wriggers P; Marino M
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1297-1315. PubMed ID: 33768359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remodelling of continuously distributed collagen fibres in soft connective tissues.
    Driessen NJ; Peters GW; Huyghe JM; Bouten CV; Baaijens FP
    J Biomech; 2003 Aug; 36(8):1151-8. PubMed ID: 12831741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transverse isotropic constitutive model for the aortic valve tissue incorporating rate-dependency and fibre dispersion: Application to biaxial deformation.
    Anssari-Benam A; Tseng YT; Bucchi A
    J Mech Behav Biomed Mater; 2018 Sep; 85():80-93. PubMed ID: 29859418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the correlation between continuum mechanics entities and cell activity in biological soft tissues: assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues.
    Kroon M
    J Theor Biol; 2010 May; 264(1):66-76. PubMed ID: 20045702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology.
    Ehret AE; Bircher K; Stracuzzi A; Marina V; Zündel M; Mazza E
    Nat Commun; 2017 Oct; 8(1):1002. PubMed ID: 29042539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical mechanics of connective tissues: integrating insights from nano to macroscopic studies.
    Gohl KL; Listrat A; Béchet D
    J Biomed Nanotechnol; 2014 Oct; 10(10):2464-507. PubMed ID: 25992406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues.
    Menzel A; Harrysson M; Ristinmaa M
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):505-24. PubMed ID: 19230147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution.
    Weisbecker H; Unterberger MJ; Holzapfel GA
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modelling of the fibre-matrix interaction in biaxial loading for hyperelastic soft tissue models.
    Lu YT; Zhu HX; Richmond S; Middleton J
    Int J Numer Method Biomed Eng; 2012 Apr; 28(4):401-11. PubMed ID: 25365655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling.
    Böl M; Iyer R; Dittmann J; Garcés-Schröder M; Dietzel A
    Acta Biomater; 2019 Jul; 92():277-289. PubMed ID: 31077887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel microstructural interpretation for the biomechanics of mouse skin derived from multiscale characterization.
    Lynch B; Bancelin S; Bonod-Bidaud C; Gueusquin JB; Ruggiero F; Schanne-Klein MC; Allain JM
    Acta Biomater; 2017 Mar; 50():302-311. PubMed ID: 28043893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modelling of anisotropy in fibrous connective tissue.
    Olsen L; Maini PK; Sherratt JA; Dallon J
    Math Biosci; 1999 May; 158(2):145-70. PubMed ID: 10232007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta.
    Martufi G; Gasser TC
    J Biomech; 2011 Sep; 44(14):2544-50. PubMed ID: 21862020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling extracellular matrix and cellular contributions to whole muscle mechanics.
    Konno RN; Nigam N; Wakeling JM
    PLoS One; 2021; 16(4):e0249601. PubMed ID: 33798249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.