These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34985742)

  • 1. Cell-Free Gene Expression from DNA Brushes.
    Levy M; Vonshak O; Divon Y; Greiss F; Avidan N; Daube SS; Bar-Ziv RH
    Methods Mol Biol; 2022; 2433():135-149. PubMed ID: 34985742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent properties of dense DNA phases toward artificial biosystems on a surface.
    Bracha D; Karzbrun E; Daube SS; Bar-Ziv RH
    Acc Chem Res; 2014 Jun; 47(6):1912-21. PubMed ID: 24856257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boundary-Free Ribosome Compartmentalization by Gene Expression on a Surface.
    Levy M; Falkovich R; Vonshak O; Bracha D; Tayar AM; Shimizu Y; Daube SS; Bar-Ziv RH
    ACS Synth Biol; 2021 Mar; 10(3):609-619. PubMed ID: 33595282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic gene brushes: a structure-function relationship.
    Buxboim A; Daube SS; Bar-Ziv R
    Mol Syst Biol; 2008; 4():181. PubMed ID: 18414482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA Polymer Brush Patterning through Photocontrollable Surface-Initiated DNA Hybridization Chain Reaction.
    Huang F; Zhou X; Yao D; Xiao S; Liang H
    Small; 2015 Nov; 11(43):5800-6. PubMed ID: 26382921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultradense synthetic gene brushes on a chip.
    Buxboim A; Daube SS; Bar-Ziv R
    Nano Lett; 2009 Feb; 9(2):909-13. PubMed ID: 19170553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programming multi-protein assembly by gene-brush patterns and two-dimensional compartment geometry.
    Vonshak O; Divon Y; Förste S; Garenne D; Noireaux V; Lipowsky R; Rudorf S; Daube SS; Bar-Ziv RH
    Nat Nanotechnol; 2020 Sep; 15(9):783-791. PubMed ID: 32690886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Memory in a DNA Brush: Site-Specific Recombination Responsive to Polymer Density, Orientation, and Conformation.
    Avidan N; Levy M; Daube SS; Bar-Ziv RH
    J Am Chem Soc; 2023 May; 145(17):9729-9736. PubMed ID: 37071757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct patterning of intrinsically electron beam sensitive polymer brushes.
    Rastogi A; Paik MY; Tanaka M; Ober CK
    ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations.
    Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y
    Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-free protein synthesis and assembly on a biochip.
    Heyman Y; Buxboim A; Wolf SG; Daube SS; Bar-Ziv RH
    Nat Nanotechnol; 2012 May; 7(6):374-8. PubMed ID: 22635100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning of photocleavable zwitterionic polymer brush fabricated on silicon wafer.
    Kamada T; Yamazawa Y; Nakaji-Hirabayashi T; Kitano H; Usui Y; Hiroi Y; Kishioka T
    Colloids Surf B Biointerfaces; 2014 Nov; 123():878-86. PubMed ID: 25466462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic biology. Programmable on-chip DNA compartments as artificial cells.
    Karzbrun E; Tayar AM; Noireaux V; Bar-Ziv RH
    Science; 2014 Aug; 345(6198):829-32. PubMed ID: 25124443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic polymer brushes containing tethered acetylcholine analogs for protein and hippocampal neuronal cell patterning.
    Zhou Z; Yu P; Geller HM; Ober CK
    Biomacromolecules; 2013 Feb; 14(2):529-37. PubMed ID: 23336729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of DNA polymer brush arrays by destructive micropatterning and rolling-circle amplification.
    Barbee KD; Chandrangsu M; Huang X
    Macromol Biosci; 2011 May; 11(5):607-17. PubMed ID: 21305694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-step photolithographic interface for cell-free gene expression and active biochips.
    Buxboim A; Bar-Dagan M; Frydman V; Zbaida D; Morpurgo M; Bar-Ziv R
    Small; 2007 Mar; 3(3):500-10. PubMed ID: 17285642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Expression on DNA Biochips Patterned with Strand-Displacement Lithography.
    Pardatscher G; Schwarz-Schilling M; Daube SS; Bar-Ziv RH; Simmel FC
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4783-4786. PubMed ID: 29469991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistimuli Responsive Reversible Cross-Linking-Decross-Linking of Concentrated Polymer Brushes.
    Sim XM; Wang CG; Liu X; Goto A
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28711-28719. PubMed ID: 32515964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.