These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34985772)

  • 1. Contributing Areas to Domestic Wells in Dipping Sedimentary Rocks under Extreme Recharge Events.
    Tiedeman CR; Shapiro AM
    Ground Water; 2022 Jul; 60(4):460-476. PubMed ID: 34985772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport.
    Medici G; West LJ; Banwart SA
    J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using domestic well records to determine fractured bedrock watersheds and recharge rates.
    Metcalf MJ; Robbins GA
    Ground Water; 2014; 52(5):782-8. PubMed ID: 24102252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of modeled recharge distribution on simulated groundwater availability and capture.
    Tillman FD; Pool DR; Leake SA
    Ground Water; 2015; 53(3):378-88. PubMed ID: 24841767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approach to roof rainwater harvesting and aquifer recharge in an urban environment: Dry and wet infiltration wells comparison.
    Netzer L; Kurtzman D; Ben-Hur M; Livshitz Y; Katzir R; Nachshon U
    Water Res; 2024 Mar; 252():121183. PubMed ID: 38301524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Groundwater Age and Recharge Source on Nitrate Concentrations in Domestic Wells in the San Joaquin Valley.
    Castaldo G; Visser A; Fogg GE; Harter T
    Environ Sci Technol; 2021 Feb; 55(4):2265-2275. PubMed ID: 33507730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Groundwater metabolome responds to recharge in fractured sedimentary strata.
    Zerfaß C; Lehmann R; Ueberschaar N; Sanchez-Arcos C; Totsche KU; Pohnert G
    Water Res; 2022 Sep; 223():118998. PubMed ID: 36030668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential effects on groundwater quality associated with infiltrating stormwater through dry wells for aquifer recharge.
    Edwards EC; Nelson C; Harter T; Bowles C; Li X; Lock B; Fogg GE; Washburn BS
    J Contam Hydrol; 2022 Apr; 246():103964. PubMed ID: 35180606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of recharge and pollutant fluxes to urban groundwaters.
    Thomas A; Tellam J
    Sci Total Environ; 2006 May; 360(1-3):158-79. PubMed ID: 16325236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Episodic and Continuous Recharge Estimation from High-Resolution Well Records.
    Eaton TT
    Ground Water; 2020 Jul; 58(4):511-523. PubMed ID: 31599963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Analytical Method for Assessing Recharge Using Groundwater Travel Time in Dupuit-Forchheimer Aquifers.
    Chesnaux R; Santoni S; Garel E; Huneau F
    Ground Water; 2018 Nov; 56(6):986-992. PubMed ID: 29732535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient analysis of the source of water to wells: Cape Cod, Massachusetts.
    Masterson JP; Walter DA; LeBlanc DR
    Ground Water; 2004; 42(1):126-34. PubMed ID: 14763625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Flow Distribution in a Multiaquifer Recharge Well Using an In Situ Flowmeter.
    Martinez MB; Widdowson MA
    Ground Water; 2024; 62(4):605-616. PubMed ID: 38084658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaky Aquifer Models to Simulate the Well Flow in Fractured Aquifers with Linear Interporosity Flow.
    Székely F; Szűcs P; Zákányi B
    Ground Water; 2019 Sep; 57(5):687-692. PubMed ID: 30614520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities.
    Medici G; West LJ; Mountney NP
    J Contam Hydrol; 2016 Nov; 194():36-58. PubMed ID: 27969550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple well-shutdown tests and site-scale flow simulation in fractured rocks.
    Tiedeman CR; Lacombe PJ; Goode DJ
    Ground Water; 2010; 48(3):401-15. PubMed ID: 20002208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system.
    Cho MS; Zhao Z; Thomson NR; Illman WA
    J Contam Hydrol; 2020 Feb; 229():103559. PubMed ID: 31784037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of vertical flows in wells on groundwater sampling.
    McMillan LA; Rivett MO; Tellam JH; Dumble P; Sharp H
    J Contam Hydrol; 2014 Nov; 169():50-61. PubMed ID: 24999176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing and Source of Recharge to the Columbia River Basalt Groundwater System in Northeastern Oregon.
    Johnson HM; Ely K; Maher AT
    Ground Water; 2024; 62(5):761-777. PubMed ID: 38553951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.