BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34985865)

  • 21. De novo biosynthesis of tyrosol acetate and hydroxytyrosol acetate from glucose in engineered Escherichia coli.
    Guo D; Fu X; Sun Y; Li X; Pan H
    Enzyme Microb Technol; 2021 Oct; 150():109886. PubMed ID: 34489039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine.
    Guo D; Zhang L; Pan H; Li X
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28436122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain.
    Kang SY; Choi O; Lee JK; Ahn JO; Ahn JS; Hwang BY; Hong YS
    Microb Cell Fact; 2015 Jun; 14():78. PubMed ID: 26055892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides.
    Liu X; Li XB; Jiang J; Liu ZN; Qiao B; Li FF; Cheng JS; Sun X; Yuan YJ; Qiao J; Zhao GR
    Metab Eng; 2018 May; 47():243-253. PubMed ID: 29596994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli.
    Chung D; Kim SY; Ahn JH
    Sci Rep; 2017 May; 7(1):2578. PubMed ID: 28566694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.
    Rodriguez A; Kildegaard KR; Li M; Borodina I; Nielsen J
    Metab Eng; 2015 Sep; 31():181-8. PubMed ID: 26292030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic Engineering of Escherichia coli for Production of 2-Phenylethanol and 2-Phenylethyl Acetate from Glucose.
    Guo D; Zhang L; Kong S; Liu Z; Li X; Pan H
    J Agric Food Chem; 2018 Jun; 66(23):5886-5891. PubMed ID: 29808680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of Diverse Hydroxycinnamoyl Phenylethanoid Esters Using Escherichia coli.
    Song MK; Cho AR; Sim G; Ahn JH
    J Agric Food Chem; 2019 Feb; 67(7):2028-2035. PubMed ID: 30698011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilization of a styrene-derived pathway for 2-phenylethanol production in budding yeast.
    Mo Q; Chen H; Fan C; Zhang D; Liu L; Fu B; Yuan J
    Appl Microbiol Biotechnol; 2021 Mar; 105(6):2333-2340. PubMed ID: 33649922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning the specificity of the recombinant multicomponent toluene o-xylene monooxygenase from Pseudomonas sp. strain OX1 for the biosynthesis of tyrosol from 2-phenylethanol.
    Notomista E; Scognamiglio R; Troncone L; Donadio G; Pezzella A; Di Donato A; Izzo V
    Appl Environ Microbiol; 2011 Aug; 77(15):5428-37. PubMed ID: 21666013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis.
    Chen W; Yao J; Meng J; Han W; Tao Y; Chen Y; Guo Y; Shi G; He Y; Jin JM; Tang SY
    Nat Commun; 2019 Feb; 10(1):960. PubMed ID: 30814511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-Pot Bioconversion of Lignin-Derived Substrates into Gallic Acid.
    Fu B; Xiao G; Zhang Y; Yuan J
    J Agric Food Chem; 2021 Sep; 69(38):11336-11341. PubMed ID: 34529433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydroxytyrosol from tyrosol using hydroxyphenylacetic acid-induced bacterial cultures and evidence of the role of 4-HPA 3-hydroxylase.
    Liebgott PP; Amouric A; Comte A; Tholozan JL; Lorquin J
    Res Microbiol; 2009 Dec; 160(10):757-66. PubMed ID: 19837158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of hydroxytyrosol, 2-hydroxyphenylacetic acid, and 3-hydroxyphenylacetic acid by differential conversion of tyrosol isomers using Serratia marcescens strain.
    Allouche N; Sayadi S
    J Agric Food Chem; 2005 Aug; 53(16):6525-30. PubMed ID: 16076144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system.
    Achmon Y; Ben-Barak Zelas Z; Fishman A
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3603-11. PubMed ID: 24081322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose.
    Kang Z; Zhang C; Du G; Chen J
    Appl Biochem Biotechnol; 2014 Feb; 172(4):2012-21. PubMed ID: 24318591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rational Engineering of Chorismate-Related Pathways in
    Guo W; Huang Q; Liu H; Hou S; Niu S; Jiang Y; Bao X; Shen Y; Fang X
    Front Bioeng Biotechnol; 2019; 7():152. PubMed ID: 31334226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered Pseudomonas putida KT2440.
    Williamson JJ; Bahrin N; Hardiman EM; Bugg TDH
    Biotechnol J; 2020 Jul; 15(7):e1900571. PubMed ID: 32488970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Dynamic regulation using a quorum-sensing circuit enhances the production of tyrosol by
    Shen Y; Zhou Z; He X; Yin L; He C; Zhang Z
    Sheng Wu Gong Cheng Xue Bao; 2023 Aug; 39(8):3379-3393. PubMed ID: 37622367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of overexpression of endogenous phenylalanine ammonia-lyase (PALrs1) on accumulation of salidroside in Rhodiola sachalinensis.
    Ma LQ; Gao DY; Wang YN; Wang HH; Zhang JX; Pang XB; Hu TS; Lü SY; Li GF; Ye HC; Li YF; Wang H
    Plant Biol (Stuttg); 2008 May; 10(3):323-33. PubMed ID: 18426479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.