BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34985865)

  • 41. Efficient Synthesis of Hydroxytyrosol from l-3,4-Dihydroxyphenylalanine Using Engineered Escherichia coli Whole Cells.
    Li C; Jia P; Bai Y; Fan TP; Zheng X; Cai Y
    J Agric Food Chem; 2019 Jun; 67(24):6867-6873. PubMed ID: 31134807
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene.
    Qi WW; Vannelli T; Breinig S; Ben-Bassat A; Gatenby AA; Haynie SL; Sariaslani FS
    Metab Eng; 2007 May; 9(3):268-76. PubMed ID: 17451990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of salidroside in metabolically engineered Escherichia coli.
    Bai Y; Bi H; Zhuang Y; Liu C; Cai T; Liu X; Zhang X; Liu T; Ma Y
    Sci Rep; 2014 Oct; 4():6640. PubMed ID: 25323006
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.
    Richard P; Viljanen K; Penttilä M
    AMB Express; 2015; 5():12. PubMed ID: 25852989
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Characterization of highly active tyrosine ammonia lyase and its application in biosynthesis of
    Huang Y; Jiang X; Chen W; Zhang G; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4553-4566. PubMed ID: 36593193
    [No Abstract]   [Full Text] [Related]  

  • 46. [Directed evolution of tyrosine ammonia-lyase to improve the production of p-coumaric acid in Escherichia coli].
    Huo Y; Wu F; Song G; Tu R; Chen W; Hua E; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2020 Nov; 36(11):2367-2376. PubMed ID: 33244931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex.
    Lin Y; Yan Y
    Microb Cell Fact; 2012 Apr; 11():42. PubMed ID: 22475509
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving tyrosol production efficiency through shortening the allosteric signal transmission distance of pyruvate decarboxylase.
    Xu H; Yu B; Wei W; Chen X; Gao C; Liu J; Guo L; Song W; Liu L; Wu J
    Appl Microbiol Biotechnol; 2023 Jun; 107(11):3535-3549. PubMed ID: 37099057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi.
    Vannelli T; Wei Qi W; Sweigard J; Gatenby AA; Sariaslani FS
    Metab Eng; 2007 Mar; 9(2):142-51. PubMed ID: 17204442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol.
    Allouche N; Damak M; Ellouz R; Sayadi S
    Appl Environ Microbiol; 2004 Apr; 70(4):2105-9. PubMed ID: 15066802
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Caffeic acid production from glucose using metabolically engineered Escherichia coli.
    Sakae K; Nonaka D; Kishida M; Hirata Y; Fujiwara R; Kondo A; Noda S; Tanaka T
    Enzyme Microb Technol; 2023 Mar; 164():110193. PubMed ID: 36621069
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient production of hydroxytyrosol by directed evolution of HpaB in Escherichia coli.
    Qi L; Liu C; Peplowski L; Shen W; Yang H; Xia Y; Chen X
    Biochem Biophys Res Commun; 2023 Jun; 663():16-24. PubMed ID: 37116393
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    J Biosci Bioeng; 2016 Dec; 122(6):730-735. PubMed ID: 27405271
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Styrene biosynthesis from glucose by engineered E. coli.
    McKenna R; Nielsen DR
    Metab Eng; 2011 Sep; 13(5):544-54. PubMed ID: 21722749
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate.
    Rodrigues JL; Araújo RG; Prather KL; Kluskens LD; Rodrigues LR
    Biotechnol J; 2015 Apr; 10(4):599-609. PubMed ID: 25641677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing
    Koma D; Kishida T; Yoshida E; Ohashi H; Yamanaka H; Moriyoshi K; Nagamori E; Ohmoto T
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering of L-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol.
    Satoh Y; Tajima K; Munekata M; Keasling JD; Lee TS
    Metab Eng; 2012 Nov; 14(6):603-10. PubMed ID: 22948011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in
    Zhan T; Chen Q; Zhang C; Bi C; Zhang X
    ACS Synth Biol; 2020 Sep; 9(9):2600-2609. PubMed ID: 32794740
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CYP2D6 and CYP2A6 biotransform dietary tyrosol into hydroxytyrosol.
    Rodríguez-Morató J; Robledo P; Tanner JA; Boronat A; Pérez-Mañá C; Oliver Chen CY; Tyndale RF; de la Torre R
    Food Chem; 2017 Feb; 217():716-725. PubMed ID: 27664690
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Yeast: A platform for the production of
    Guo X; Wu X; Ma H; Liu H; Luo Y
    Yeast; 2023 May; 40(5-6):214-230. PubMed ID: 37078622
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.