BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34985865)

  • 61. One-Pot Cascade Biotransformation for Efficient Synthesis of Benzyl Alcohol and Its Analogs.
    Liu L; Zhu Y; Chen Y; Chen H; Fan C; Mo Q; Yuan J
    Chem Asian J; 2020 Apr; 15(7):1018-1021. PubMed ID: 32017396
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway.
    Hwang JY; Park J; Seo JH; Cha M; Cho BK; Kim J; Kim BG
    Biotechnol Bioeng; 2009 Apr; 102(5):1323-9. PubMed ID: 19016485
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents.
    Liebgott PP; Labat M; Amouric A; Tholozan JL; Lorquin J
    J Appl Microbiol; 2008 Dec; 105(6):2084-95. PubMed ID: 19120654
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of two new aromatic amino acid lyases from actinomycetes for highly efficient production of p-coumaric acid.
    Cui P; Zhong W; Qin Y; Tao F; Wang W; Zhan J
    Bioprocess Biosyst Eng; 2020 Jul; 43(7):1287-1298. PubMed ID: 32198549
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Tyrosol--the autoregulatory d1 factor of the yeast Saccharomyces cerevisiae].
    Batrakov SG; El'-Registan GI; Pridachina NN; Nenashev VA; Kozlova AN; Griaznova MN; Zolotareva IN
    Mikrobiologiia; 1993; 62(4):633-8. PubMed ID: 7506347
    [TBL] [Abstract][Full Text] [Related]  

  • 66. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Engineering
    Gu Y; Ma J; Zhu Y; Ding X; Xu P
    ACS Synth Biol; 2020 Aug; 9(8):2096-2106. PubMed ID: 32650638
    [No Abstract]   [Full Text] [Related]  

  • 68. Metabolic engineering of Escherichia coli for poly(3-hydroxypropionate) production from glycerol and glucose.
    Wang Q; Yang P; Xian M; Feng L; Wang J; Zhao G
    Biotechnol Lett; 2014 Nov; 36(11):2257-62. PubMed ID: 25048226
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Assessment of quorum sensing effects of tyrosol on fermentative performance by chief ethnic fermentative yeasts from northeast India.
    Nath BJ; Mishra AK; Sarma HK
    J Appl Microbiol; 2021 Aug; 131(2):728-742. PubMed ID: 33103297
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli.
    Lee H; Kim BG; Kim M; Ahn JH
    J Microbiol Biotechnol; 2015 Sep; 25(9):1442-8. PubMed ID: 25975614
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.
    Lee JH; Wendisch VF
    J Biotechnol; 2017 Sep; 257():211-221. PubMed ID: 27871872
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli.
    Zhu S; Wu J; Du G; Zhou J; Chen J
    Appl Environ Microbiol; 2014 May; 80(10):3072-80. PubMed ID: 24610848
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli.
    Vargas-Tah A; Martínez LM; Hernández-Chávez G; Rocha M; Martínez A; Bolívar F; Gosset G
    Microb Cell Fact; 2015 Jan; 14():6. PubMed ID: 25592545
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.
    Lee K; Bang HB; Lee YH; Jeong KJ
    Microb Cell Fact; 2019 May; 18(1):79. PubMed ID: 31053078
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial Cytochrome P450.
    Haslinger K; Prather KLJ
    Microb Cell Fact; 2020 Feb; 19(1):26. PubMed ID: 32046741
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Discovery of Novel Tyrosine Ammonia Lyases for the Enzymatic Synthesis of p-Coumaric Acid.
    Brack Y; Sun C; Yi D; Bornscheuer UT
    Chembiochem; 2022 May; 23(10):e202200062. PubMed ID: 35352477
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3.
    Nikodinovic-Runic J; Coulombel L; Francuski D; Sharma ND; Boyd DR; Ferrall RM; O'Connor KE
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4849-58. PubMed ID: 22890778
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis.
    Zhang JX; Ma LQ; Yu HS; Zhang H; Wang HT; Qin YF; Shi GL; Wang YN
    Plant Cell Rep; 2011 Aug; 30(8):1443-53. PubMed ID: 21538102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.