These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 34985889)
1. Glucosinolate Profiles in Different Organs of 111 Radish Accessions and Candidate Genes Involved in Converting Glucobrassicin to 4-Hydroxyglucobrassicin. Wang Y; Wang Q; Sun H; Zhang Z; Qian H; Zhao X; He H; Zhang L J Agric Food Chem; 2022 Jan; 70(2):488-497. PubMed ID: 34985889 [TBL] [Abstract][Full Text] [Related]
3. Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.). Ishida M; Kakizaki T; Morimitsu Y; Ohara T; Hatakeyama K; Yoshiaki H; Kohori J; Nishio T Theor Appl Genet; 2015 Oct; 128(10):2037-46. PubMed ID: 26152572 [TBL] [Abstract][Full Text] [Related]
4. Selenium Biofortification Effect on Glucosinolate Content of Đulović A; Usanović K; Kukoč Modun L; Blažević I Molecules; 2023 Oct; 28(20):. PubMed ID: 37894683 [TBL] [Abstract][Full Text] [Related]
5. Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component. Ishida M; Nagata M; Ohara T; Kakizaki T; Hatakeyama K; Nishio T Breed Sci; 2012 Mar; 62(1):63-70. PubMed ID: 23136515 [TBL] [Abstract][Full Text] [Related]
6. A Comparative Transcriptome and Metabolome Combined Analysis Reveals the Key Genes and Their Regulatory Model Responsible for Glucoraphasatin Accumulation in Radish Fleshy Taproots. Li X; Wang P; Wang J; Wang H; Liu T; Zhang X; Song J; Yang W; Wu C; Yang H; Liu L; Li X Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328374 [TBL] [Abstract][Full Text] [Related]
7. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002 [TBL] [Abstract][Full Text] [Related]
8. Identification of glucosinolates and volatile odor compounds in microwaved radish (Raphanus sativus L.) seeds and the corresponding oils by UPLC-IMS-QTOF-MS and GC × GC-qMS analysis. Jia X; Yu P; An Q; Ren J; Fan G; Wei Z; Li X; Pan S Food Res Int; 2023 Jul; 169():112873. PubMed ID: 37254321 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops. Bhandari SR; Jo JS; Lee JG Molecules; 2015 Aug; 20(9):15827-41. PubMed ID: 26334264 [TBL] [Abstract][Full Text] [Related]
10. Correlation of Glucosinolates and Volatile Constituents of Six Brassicaceae Seeds with Their Antioxidant Activities Based on Partial Least Squares Regression. Khalil N; Gad HA; Al Musayeib NM; Bishr M; Ashour ML Plants (Basel); 2022 Apr; 11(9):. PubMed ID: 35567116 [TBL] [Abstract][Full Text] [Related]
11. Glucosinolates in wild and cultivated Montaut S; Read S; Marquis F; Bizard L; Rollin P Nat Prod Res; 2020 Apr; 34(8):1163-1166. PubMed ID: 30663352 [TBL] [Abstract][Full Text] [Related]
12. Glucosinolate profile variation of growth stages of wild radish (Raphanus raphanistrum). Malik MS; Riley MB; Norsworthy JK; Bridges W J Agric Food Chem; 2010 Mar; 58(6):3309-15. PubMed ID: 20163113 [TBL] [Abstract][Full Text] [Related]
13. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study. Liu S; Huang H; Yi X; Zhang Y; Yang Q; Zhang C; Fan C; Zhou Y Plant Biotechnol J; 2020 Jun; 18(6):1472-1484. PubMed ID: 31820843 [TBL] [Abstract][Full Text] [Related]
14. Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head ( Bhandari SR; Rhee J; Choi CS; Jo JS; Shin YK; Lee JG Molecules; 2020 Apr; 25(8):. PubMed ID: 32316621 [TBL] [Abstract][Full Text] [Related]
17. Microwave-Assisted versus Conventional Isolation of Glucosinolate Degradation Products from Blažević I; Đulović A; Čikeš Čulić V; Popović M; Guillot X; Burčul F; Rollin P Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32024150 [TBL] [Abstract][Full Text] [Related]
18. Insights into glucosinolate accumulation and metabolic pathways in Isatis indigotica Fort. Zhang T; Liu R; Zheng J; Wang Z; Gao T; Qin M; Hu X; Wang Y; Yang S; Li T BMC Plant Biol; 2022 Feb; 22(1):78. PubMed ID: 35193497 [TBL] [Abstract][Full Text] [Related]
19. A 2-Oxoglutarate-Dependent Dioxygenase Mediates the Biosynthesis of Glucoraphasatin in Radish. Kakizaki T; Kitashiba H; Zou Z; Li F; Fukino N; Ohara T; Nishio T; Ishida M Plant Physiol; 2017 Mar; 173(3):1583-1593. PubMed ID: 28100450 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the glucosinolates in Hesperis matronalis L. and Hesperis laciniata All.: Unveiling 4'-O-β-d-apiofuranosylglucomatronalin. Montaut S; Read S; Blažević I; Nuzillard JM; Roje M; Harakat D; Rollin P Carbohydr Res; 2020 Feb; 488():107898. PubMed ID: 31918339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]