These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34985946)

  • 1. All-in-one flexible supercapacitor with ultrastable performance under extreme load.
    Na YW; Cheon JY; Kim JH; Jung Y; Lee K; Park JS; Park JY; Song KS; Lee SB; Kim T; Yang SJ
    Sci Adv; 2022 Jan; 8(1):eabl8631. PubMed ID: 34985946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance hybrid carbon nanotube fibers for wearable energy storage.
    Lu Z; Chao Y; Ge Y; Foroughi J; Zhao Y; Wang C; Long H; Wallace GG
    Nanoscale; 2017 Apr; 9(16):5063-5071. PubMed ID: 28265639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Metal-Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor.
    Qi K; Hou R; Zaman S; Qiu Y; Xia BY; Duan H
    ACS Appl Mater Interfaces; 2018 May; 10(21):18021-18028. PubMed ID: 29749722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics.
    Mirabedini A; Lu Z; Mostafavian S; Foroughi J
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat-Resistant and High-Performance Solid-State Supercapacitors Based on Poly(
    Liu T; He Z; Liu H; Yang J; Zhang S; Yu J; Ji M; Zhu C; Xu J
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18100-18109. PubMed ID: 33822588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-Metal-Organic Framework-Derived Battery Materials on Carbon Nanotube Fibers for Wearable Energy-Storage Device.
    Zhang Q; Zhou Z; Pan Z; Sun J; He B; Li Q; Zhang T; Zhao J; Tang L; Zhang Z; Wei L; Yao Y
    Adv Sci (Weinh); 2018 Dec; 5(12):1801462. PubMed ID: 30581717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible supercapacitor made of carbon nanotube yarn with internal pores.
    Choi C; Lee JA; Choi AY; Kim YT; Lepró X; Lima MD; Baughman RH; Kim SJ
    Adv Mater; 2014 Apr; 26(13):2059-65. PubMed ID: 24353070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Hierarchical NiCo
    Li G; Cai H; Li X; Zhang J; Zhang D; Yang Y; Xiong J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37675-37684. PubMed ID: 31532185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors.
    Choi C; Kim SH; Sim HJ; Lee JA; Choi AY; Kim YT; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Sci Rep; 2015 Mar; 5():9387. PubMed ID: 25797351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics-Favorable Ultrathin NiCo-MOF Nanosheets with Boosted Pseudocapacitive Charge Storage for Quasi-Solid-State Hybrid Supercapacitors.
    Li H; Wang X; Dai L; Guo F; Mi H; Ji C; Sun L
    Inorg Chem; 2022 Mar; 61(9):3866-3874. PubMed ID: 35179879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanotube Fibers Decorated with MnO
    Zhang L; Zhang X; Wang J; Seveno D; Fransaer J; Locquet JP; Seo JW
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Ion Transfer of Metal-Organic Framework Interface for Highly Efficient Energy Storage.
    Lu C; Chen X
    Nano Lett; 2024 Mar; 24(10):3267-3272. PubMed ID: 38416580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor.
    Shi P; Li L; Hua L; Qian Q; Wang P; Zhou J; Sun G; Huang W
    ACS Nano; 2017 Jan; 11(1):444-452. PubMed ID: 28027441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicolor, Fluorescent Supercapacitor Fiber.
    Liao M; Sun H; Zhang J; Wu J; Xie S; Fu X; Sun X; Wang B; Peng H
    Small; 2018 Oct; 14(43):e1702052. PubMed ID: 28980760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Metal-Oriented Electrodeposition of a Co-Based Metal-Organic Framework with Superior Capacitive Performance.
    Han Y; Cui J; Yu Y; Chao Y; Li D; Wang C; Wallace GG
    ChemSusChem; 2022 Jul; 15(14):e202200644. PubMed ID: 35510800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible hybrid yarn-shaped supercapacitors based on porous nickel cobalt sulfide nanosheet array layers on gold metalized cotton yarns.
    Wang HT; Liu YN; Kang XH; Wang YF; Yang SY; Bian SW; Zhu Q
    J Colloid Interface Sci; 2018 Dec; 532():527-535. PubMed ID: 30103135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries.
    Kang KN; Ramadoss A; Min JW; Yoon JC; Lee D; Kang SJ; Jang JH
    Nanomicro Lett; 2020 Jan; 12(1):28. PubMed ID: 34138068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.
    Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing nickel cobaltate @nickel-manganese layered double hydroxide hybrid composite on carbon cloth for high-performance flexible supercapacitors.
    Xiao H; Ma Y; Xu M; Liu R; Li X; Wang X; Wang Y; Liu Y; Yuan G
    J Colloid Interface Sci; 2022 Apr; 611():149-160. PubMed ID: 34952269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.