BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 34986141)

  • 1. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea.
    Chadwick GL; Skennerton CT; Laso-Pérez R; Leu AO; Speth DR; Yu H; Morgan-Lang C; Hatzenpichler R; Goudeau D; Malmstrom R; Brazelton WJ; Woyke T; Hallam SJ; Tyson GW; Wegener G; Boetius A; Orphan VJ
    PLoS Biol; 2022 Jan; 20(1):e3001508. PubMed ID: 34986141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea.
    Skennerton CT; Chourey K; Iyer R; Hettich RL; Tyson GW; Orphan VJ
    mBio; 2017 Aug; 8(4):. PubMed ID: 28765215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep.
    Yu H; Speth DR; Connon SA; Goudeau D; Malmstrom RR; Woyke T; Orphan VJ
    Appl Environ Microbiol; 2022 Jun; 88(11):e0210921. PubMed ID: 35604226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea.
    Murali R; Yu H; Speth DR; Wu F; Metcalfe KS; Crémière A; Laso-Pèrez R; Malmstrom RR; Goudeau D; Woyke T; Hatzenpichler R; Chadwick GL; Connon SA; Orphan VJ
    PLoS Biol; 2023 Sep; 21(9):e3002292. PubMed ID: 37747940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia.
    Krukenberg V; Riedel D; Gruber-Vodicka HR; Buttigieg PL; Tegetmeyer HE; Boetius A; Wegener G
    Environ Microbiol; 2018 May; 20(5):1651-1666. PubMed ID: 29468803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.
    Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.
    Wegener G; Krukenberg V; Riedel D; Tegetmeyer HE; Boetius A
    Nature; 2015 Oct; 526(7574):587-90. PubMed ID: 26490622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea.
    Yu H; Skennerton CT; Chadwick GL; Leu AO; Aoki M; Tyson GW; Orphan VJ
    ISME J; 2022 Jan; 16(1):168-177. PubMed ID: 34285362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral Gene Transfer Drives Metabolic Flexibility in the Anaerobic Methane-Oxidizing Archaeal Family
    Leu AO; McIlroy SJ; Ye J; Parks DH; Orphan VJ; Tyson GW
    mBio; 2020 Jun; 11(3):. PubMed ID: 32605988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic Insights into Niche Partitioning across Sediment Depth among Anaerobic Methane-Oxidizing Archaea in Global Methane Seeps.
    Chen J; Li Y; Zhong C; Xu Z; Lu G; Jing H; Liu H
    mSystems; 2023 Apr; 8(2):e0117922. PubMed ID: 36927099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse Methanogenesis and Respiration in Methanotrophic Archaea.
    Timmers PH; Welte CU; Koehorst JJ; Plugge CM; Jetten MS; Stams AJ
    Archaea; 2017; 2017():1654237. PubMed ID: 28154498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.
    Scheller S; Yu H; Chadwick GL; McGlynn SE; Orphan VJ
    Science; 2016 Feb; 351(6274):703-7. PubMed ID: 26912857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor.
    Timmers PH; Gieteling J; Widjaja-Greefkes HC; Plugge CM; Stams AJ; Lens PN; Meulepas RJ
    Appl Environ Microbiol; 2015 Feb; 81(4):1286-96. PubMed ID: 25501484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California).
    Vigneron A; Cruaud P; Pignet P; Caprais JC; Cambon-Bonavita MA; Godfroy A; Toffin L
    ISME J; 2013 Aug; 7(8):1595-608. PubMed ID: 23446836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.
    Nauhaus K; Treude T; Boetius A; Krüger M
    Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.
    Orphan VJ; Hinrichs KU; Ussler W; Paull CK; Taylor LT; Sylva SP; Hayes JM; Delong EF
    Appl Environ Microbiol; 2001 Apr; 67(4):1922-34. PubMed ID: 11282650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS.
    Orphan VJ; Turk KA; Green AM; House CH
    Environ Microbiol; 2009 Jul; 11(7):1777-91. PubMed ID: 19383036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subgroup Characteristics of Marine Methane-Oxidizing ANME-2 Archaea and Their Syntrophic Partners as Revealed by Integrated Multimodal Analytical Microscopy.
    McGlynn SE; Chadwick GL; O'Neill A; Mackey M; Thor A; Deerinck TJ; Ellisman MH; Orphan VJ
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29625978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.
    Bhattarai S; Cassarini C; Gonzalez-Gil G; Egger M; Slomp CP; Zhang Y; Esposito G; Lens PNL
    Microb Ecol; 2017 Oct; 74(3):608-622. PubMed ID: 28389729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea.
    Lazar CS; Dinasquet J; L'Haridon S; Pignet P; Toffin L
    Antonie Van Leeuwenhoek; 2011 Nov; 100(4):639-53. PubMed ID: 21751028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.