These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 34986141)

  • 21. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor.
    Girguis PR; Cozen AE; DeLong EF
    Appl Environ Microbiol; 2005 Jul; 71(7):3725-33. PubMed ID: 16000782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea.
    Lloyd KG; Alperin MJ; Teske A
    Environ Microbiol; 2011 Sep; 13(9):2548-64. PubMed ID: 21806748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ANME-1 archaea may drive methane accumulation and removal in estuarine sediments.
    Kevorkian RT; Callahan S; Winstead R; Lloyd KG
    Environ Microbiol Rep; 2021 Apr; 13(2):185-194. PubMed ID: 33462984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation and optimization of PCR primers for selective and quantitative detection of marine ANME subclusters involved in sulfate-dependent anaerobic methane oxidation.
    Timmers PHA; Widjaja-Greefkes HCA; Plugge CM; Stams AJM
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5847-5859. PubMed ID: 28620686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Reduced F
    Heryakusuma C; Susanti D; Yu H; Li Z; Purwantini E; Hettich RL; Orphan VJ; Mukhopadhyay B
    J Bacteriol; 2022 Jul; 204(7):e0007822. PubMed ID: 35695516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the genomes of archaea mediating the anaerobic oxidation of methane.
    Meyerdierks A; Kube M; Lombardot T; Knittel K; Bauer M; Glöckner FO; Reinhardt R; Amann R
    Environ Microbiol; 2005 Dec; 7(12):1937-51. PubMed ID: 16309392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles.
    Nie WB; Ding J; Xie GJ; Tan X; Lu Y; Peng L; Liu BF; Xing DF; Yuan Z; Ren N
    Water Res; 2021 Apr; 194():116928. PubMed ID: 33618110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.
    Teske A; Hinrichs KU; Edgcomb V; de Vera Gomez A; Kysela D; Sylva SP; Sogin ML; Jannasch HW
    Appl Environ Microbiol; 2002 Apr; 68(4):1994-2007. PubMed ID: 11916723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic oxidation of methane: an "active" microbial process.
    Cui M; Ma A; Qi H; Zhuang X; Zhuang G
    Microbiologyopen; 2015 Feb; 4(1):1-11. PubMed ID: 25530008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation.
    Osorio-Rodriguez D; Metcalfe KS; McGlynn SE; Yu H; Dekas AE; Ellisman M; Deerinck T; Aristilde L; Grotzinger JP; Orphan VJ
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2302156120. PubMed ID: 38079551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B; Samarkin V; Boetius A; Joye S
    Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor.
    Girguis PR; Orphan VJ; Hallam SJ; DeLong EF
    Appl Environ Microbiol; 2003 Sep; 69(9):5472-82. PubMed ID: 12957936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade.
    Schreiber L; Holler T; Knittel K; Meyerdierks A; Amann R
    Environ Microbiol; 2010 Aug; 12(8):2327-40. PubMed ID: 21966923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment.
    Jagersma GC; Meulepas RJ; Heikamp-de Jong I; Gieteling J; Klimiuk A; Schouten S; Damsté JS; Lens PN; Stams AJ
    Environ Microbiol; 2009 Dec; 11(12):3223-32. PubMed ID: 19703218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermophilic anaerobic oxidation of methane by marine microbial consortia.
    Holler T; Widdel F; Knittel K; Amann R; Kellermann MY; Hinrichs KU; Teske A; Boetius A; Wegener G
    ISME J; 2011 Dec; 5(12):1946-56. PubMed ID: 21697963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.
    Dong J; Ding L; Wang X; Chi Z; Lei J
    Appl Biochem Biotechnol; 2015 Mar; 175(5):2729-40. PubMed ID: 25561057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic Archaea.
    Yu H; Susanti D; McGlynn SE; Skennerton CT; Chourey K; Iyer R; Scheller S; Tavormina PL; Hettich RL; Mukhopadhyay B; Orphan VJ
    Front Microbiol; 2018; 9():2917. PubMed ID: 30559729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy.
    Metcalfe KS; Murali R; Mullin SW; Connon SA; Orphan VJ
    ISME J; 2021 Feb; 15(2):377-396. PubMed ID: 33060828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controls on Interspecies Electron Transport and Size Limitation of Anaerobically Methane-Oxidizing Microbial Consortia.
    He X; Chadwick GL; Kempes CP; Orphan VJ; Meile C
    mBio; 2021 May; 12(3):. PubMed ID: 33975943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zero-valent sulphur is a key intermediate in marine methane oxidation.
    Milucka J; Ferdelman TG; Polerecky L; Franzke D; Wegener G; Schmid M; Lieberwirth I; Wagner M; Widdel F; Kuypers MM
    Nature; 2012 Nov; 491(7425):541-6. PubMed ID: 23135396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.