These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34986268)
1. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Wojdyla Z; Borowski T Chemistry; 2022 Mar; 28(18):e202104106. PubMed ID: 34986268 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD. Reuter K; Pittelkow M; Bursy J; Heine A; Craan T; Bremer E PLoS One; 2010 May; 5(5):e10647. PubMed ID: 20498719 [TBL] [Abstract][Full Text] [Related]
3. An assay for Fe(II)/2-oxoglutarate-dependent dioxygenases by enzyme-coupled detection of succinate formation. Luo L; Pappalardi MB; Tummino PJ; Copeland RA; Fraser ME; Grzyska PK; Hausinger RP Anal Biochem; 2006 Jun; 353(1):69-74. PubMed ID: 16643838 [TBL] [Abstract][Full Text] [Related]
5. Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases. Martinez S; Hausinger RP J Biol Chem; 2015 Aug; 290(34):20702-20711. PubMed ID: 26152721 [TBL] [Abstract][Full Text] [Related]
6. The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Price JC; Barr EW; Tirupati B; Bollinger JM; Krebs C Biochemistry; 2003 Jun; 42(24):7497-508. PubMed ID: 12809506 [TBL] [Abstract][Full Text] [Related]
7. Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling. Hewitson KS; Granatino N; Welford RW; McDonough MA; Schofield CJ Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):807-28; discussion 1035-40. PubMed ID: 15901537 [TBL] [Abstract][Full Text] [Related]
8. Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. Clifton IJ; McDonough MA; Ehrismann D; Kershaw NJ; Granatino N; Schofield CJ J Inorg Biochem; 2006 Apr; 100(4):644-69. PubMed ID: 16513174 [TBL] [Abstract][Full Text] [Related]
9. On how the binding cavity of AsqJ dioxygenase controls the desaturation reaction regioselectivity: a QM/MM study. Wojdyla Z; Borowski T J Biol Inorg Chem; 2018 Jul; 23(5):795-808. PubMed ID: 29876666 [TBL] [Abstract][Full Text] [Related]
10. Rational Design of the Spatial Effect in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase Reverses the Regioselectivity of C(sp Zheng C; Wei W; Wen J; Song W; Wu J; Wang R; Yin D; Chen X; Gao C; Liu J; Liu L Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202406060. PubMed ID: 38789390 [TBL] [Abstract][Full Text] [Related]
11. Autocatalysed oxidative modifications to 2-oxoglutarate dependent oxygenases. Mantri M; Zhang Z; McDonough MA; Schofield CJ FEBS J; 2012 May; 279(9):1563-75. PubMed ID: 22251775 [TBL] [Abstract][Full Text] [Related]
12. Succinate complex crystal structures of the alpha-ketoglutarate-dependent dioxygenase AtsK: steric aspects of enzyme self-hydroxylation. Müller I; Stückl C; Wakeley J; Kertesz M; Usón I J Biol Chem; 2005 Feb; 280(7):5716-23. PubMed ID: 15542595 [TBL] [Abstract][Full Text] [Related]
13. Evidence for Modulation of Oxygen Rebound Rate in Control of Outcome by Iron(II)- and 2-Oxoglutarate-Dependent Oxygenases. Pan J; Wenger ES; Matthews ML; Pollock CJ; Bhardwaj M; Kim AJ; Allen BD; Grossman RB; Krebs C; Bollinger JM J Am Chem Soc; 2019 Sep; 141(38):15153-15165. PubMed ID: 31475820 [TBL] [Abstract][Full Text] [Related]
14. An Unusual Ferryl Intermediate and Its Implications for the Mechanism of Oxacyclization by the Loline-Producing Iron(II)- and 2-Oxoglutarate-Dependent Oxygenase, LolO. Pan J; Wenger ES; Lin CY; Zhang B; Sil D; Schaperdoth I; Saryazdi S; Grossman RB; Krebs C; Bollinger JM Biochemistry; 2024 Jul; 63(13):1674-1683. PubMed ID: 38898603 [No Abstract] [Full Text] [Related]
15. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design? Ansari A; Rajaraman G Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659 [TBL] [Abstract][Full Text] [Related]
16. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers. Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic and computational studies of a bifunctional iron- and 2-oxoglutarate dependent enzyme, AsqJ. Xue S; Tang Y; Kurnikov IV; Liao HJ; Li J; Chan NL; Kurnikova MG; Chang WC; Guo Y Methods Enzymol; 2024; 704():199-232. PubMed ID: 39300648 [TBL] [Abstract][Full Text] [Related]
18. α-Amine Desaturation of d-Arginine by the Iron(II)- and 2-(Oxo)glutarate-Dependent l-Arginine 3-Hydroxylase, VioC. Dunham NP; Mitchell AJ; Del Río Pantoja JM; Krebs C; Bollinger JM; Boal AK Biochemistry; 2018 Nov; 57(46):6479-6488. PubMed ID: 30403469 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic insights into a non-heme 2-oxoglutarate-dependent ethylene-forming enzyme: selectivity of ethylene-formation versusl-Arg hydroxylation. Xue J; Lu J; Lai W Phys Chem Chem Phys; 2019 May; 21(19):9957-9968. PubMed ID: 31041955 [TBL] [Abstract][Full Text] [Related]
20. Characteristics and biotechnology applications of aliphatic amino acid hydroxylases belonging to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily. Hibi M; Ogawa J Appl Microbiol Biotechnol; 2014 May; 98(9):3869-76. PubMed ID: 24682483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]