These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34986310)

  • 1. Greenhouse Gas Estimates of LNG Exports Must Include Global Market Effects.
    Smillie S; Muller N; Griffin WM; Apt J
    Environ Sci Technol; 2022 Jan; 56(2):1194-1201. PubMed ID: 34986310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.
    Abrahams LS; Samaras C; Griffin WM; Matthews HS
    Environ Sci Technol; 2015 Mar; 49(5):3237-45. PubMed ID: 25650513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.
    Kasumu AS; Li V; Coleman JW; Liendo J; Jordaan SM
    Environ Sci Technol; 2018 Feb; 52(4):1735-1746. PubMed ID: 29328654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.
    Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2007 Sep; 41(17):6290-6. PubMed ID: 17937317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.
    Bohnengel B; PatiƱo-Echeverri D; Bergerson J
    Environ Sci Technol; 2014 Aug; 48(16):9908-16. PubMed ID: 25025127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life Cycle Greenhouse Gas Impacts of Coal and Imported Gas-Based Power Generation in the Indian Context.
    Mallapragada DS; Naik I; Ganesan K; Banerjee R; Laurenzi IJ
    Environ Sci Technol; 2019 Jan; 53(1):539-549. PubMed ID: 30495942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of Generation Efficiencies and Supply Chain Leaks for the Life Cycle Greenhouse Gas Emissions of Natural Gas-Fired Electricity in the United States.
    Tavakkoli S; Feng L; Miller SM; Jordaan SM
    Environ Sci Technol; 2022 Feb; 56(4):2540-2550. PubMed ID: 35107984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life-cycle greenhouse gas assessment of Nigerian liquefied natural gas addressing uncertainty.
    Safaei A; Freire F; Henggeler Antunes C
    Environ Sci Technol; 2015 Mar; 49(6):3949-57. PubMed ID: 25621534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Techno-Economic Assessment and Life Cycle Assessment of CO
    Abuov Y; Serik G; Lee W
    Environ Sci Technol; 2022 Jun; 56(12):8571-8580. PubMed ID: 35653301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.
    Heath GA; O'Donoughue P; Arent DJ; Bazilian M
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):E3167-76. PubMed ID: 25049378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Oct; 45(19):8182-9. PubMed ID: 21846117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative lifecycle greenhouse gas emissions and their reduction potential for typical petrochemical enterprises in China.
    Zhao S; Zhao D; Song Q
    J Environ Sci (China); 2022 Jun; 116():125-138. PubMed ID: 35219410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pipeline Availability Limits on the Feasibility of Global Coal-to-Gas Switching in the Power Sector.
    Yang S; Hastings-Simon S; Ravikumar AP
    Environ Sci Technol; 2022 Oct; 56(20):14734-14742. PubMed ID: 36174099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. US Energy-Related Greenhouse Gas Emissions in the Absence of Federal Climate Policy.
    Eshraghi H; de Queiroz AR; DeCarolis JF
    Environ Sci Technol; 2018 Sep; 52(17):9595-9604. PubMed ID: 30129749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenhouse Gas Emissions of Western Canadian Natural Gas: Proposed Emissions Tracking for Life Cycle Modeling.
    Liu RE; Ravikumar AP; Bi XT; Zhang S; Nie Y; Brandt A; Bergerson JA
    Environ Sci Technol; 2021 Jul; 55(14):9711-9720. PubMed ID: 34254796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
    Guo Y; Tian J; Zang N; Gao Y; Chen L
    Environ Sci Technol; 2018 Jul; 52(14):7754-7762. PubMed ID: 29902379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life Cycle GHG Perspective on U.S. Natural Gas Delivery Pathways.
    Littlefield J; Rai S; Skone TJ
    Environ Sci Technol; 2022 Nov; 56(22):16033-16042. PubMed ID: 36279304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?
    Qin Y; Edwards R; Tong F; Mauzerall DL
    Environ Sci Technol; 2017 Mar; 51(5):2554-2562. PubMed ID: 28178420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inventory of main greenhouse gas emissions from energy sector in Palestine.
    Qureitem G; Al-Khatib IA; Anayah F
    Environ Monit Assess; 2019 Dec; 192(1):63. PubMed ID: 31867682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.