These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 34986350)

  • 1. Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior.
    Tang H; Costa VD; Bartolo R; Averbeck BB
    Cell Rep; 2022 Jan; 38(1):110198. PubMed ID: 34986350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primate Orbitofrontal Cortex Codes Information Relevant for Managing Explore-Exploit Tradeoffs.
    Costa VD; Averbeck BB
    J Neurosci; 2020 Mar; 40(12):2553-2561. PubMed ID: 32060169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.
    Guo R; Böhmer W; Hebart M; Chien S; Sommer T; Obermayer K; Gläscher J
    J Neurosci; 2016 Dec; 36(50):12650-12660. PubMed ID: 27974615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task.
    Wallis JD; Miller EK
    Eur J Neurosci; 2003 Oct; 18(7):2069-81. PubMed ID: 14622240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neurocomputational bases of explore-exploit decision-making.
    Hogeveen J; Mullins TS; Romero JD; Eversole E; Rogge-Obando K; Mayer AR; Costa VD
    Neuron; 2022 Jun; 110(11):1869-1879.e5. PubMed ID: 35390278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcortical Substrates of Explore-Exploit Decisions in Primates.
    Costa VD; Mitz AR; Averbeck BB
    Neuron; 2019 Aug; 103(3):533-545.e5. PubMed ID: 31196672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reward-related choices determine information timing and flow across macaque lateral prefrontal cortex.
    Tang H; Bartolo R; Averbeck BB
    Nat Commun; 2021 Feb; 12(1):894. PubMed ID: 33563989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
    Costa VD; Dal Monte O; Lucas DR; Murray EA; Averbeck BB
    Neuron; 2016 Oct; 92(2):505-517. PubMed ID: 27720488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reward-Guided Learning with and without Causal Attribution.
    Jocham G; Brodersen KH; Constantinescu AO; Kahn MC; Ianni AM; Walton ME; Rushworth MF; Behrens TE
    Neuron; 2016 Apr; 90(1):177-90. PubMed ID: 26971947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free choice activates a decision circuit between frontal and parietal cortex.
    Pesaran B; Nelson MJ; Andersen RA
    Nature; 2008 May; 453(7193):406-9. PubMed ID: 18418380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming the Choice Outcome to an Action Plan in Monkey Lateral Prefrontal Cortex: A Neural Circuit Model.
    Yim MY; Cai X; Wang XJ
    Neuron; 2019 Aug; 103(3):520-532.e5. PubMed ID: 31230761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning.
    Rothenhoefer KM; Costa VD; Bartolo R; Vicario-Feliciano R; Murray EA; Averbeck BB
    J Neurosci; 2017 Jul; 37(29):6902-6914. PubMed ID: 28626011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of amygdala lesions on reward-value coding in orbital and medial prefrontal cortex.
    Rudebeck PH; Mitz AR; Chacko RV; Murray EA
    Neuron; 2013 Dec; 80(6):1519-31. PubMed ID: 24360550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Orbitofrontal-Amygdala Interactions in Updating Action-Outcome Valuations in Macaques.
    Fiuzat EC; Rhodes SE; Murray EA
    J Neurosci; 2017 Mar; 37(9):2463-2470. PubMed ID: 28148725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothalamic Interactions with Large-Scale Neural Circuits Underlying Reinforcement Learning and Motivated Behavior.
    Averbeck BB; Murray EA
    Trends Neurosci; 2020 Sep; 43(9):681-694. PubMed ID: 32762959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connections of the Mouse Orbitofrontal Cortex and Regulation of Goal-Directed Action Selection by Brain-Derived Neurotrophic Factor.
    Zimmermann KS; Yamin JA; Rainnie DG; Ressler KJ; Gourley SL
    Biol Psychiatry; 2017 Feb; 81(4):366-377. PubMed ID: 26786312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticostriatal Circuits Encode the Subjective Value of Perceived Control.
    Wang KS; Delgado MR
    Cereb Cortex; 2019 Dec; 29(12):5049-5060. PubMed ID: 30877791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of insular cortex and ventral striatum mediates the effect of incentive memory on choice between goal-directed actions.
    Parkes SL; Bradfield LA; Balleine BW
    J Neurosci; 2015 Apr; 35(16):6464-71. PubMed ID: 25904797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rules warp feature encoding in decision-making circuits.
    Ebitz RB; Tu JC; Hayden BY
    PLoS Biol; 2020 Nov; 18(11):e3000951. PubMed ID: 33253163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.