These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 34986788)
1. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot. Liu F; Yang S; Xu F; Zhang Z; Lu Y; Zhang J; Wang G BMC Microbiol; 2022 Jan; 22(1):9. PubMed ID: 34986788 [TBL] [Abstract][Full Text] [Related]
2. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii. Chen L; Wu YD; Chong XY; Xin QH; Wang DX; Bian K J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716 [TBL] [Abstract][Full Text] [Related]
3. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo. Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709 [TBL] [Abstract][Full Text] [Related]
4. Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut. Le CN; Kruijt M; Raaijmakers JM J Appl Microbiol; 2012 Feb; 112(2):390-403. PubMed ID: 22121884 [TBL] [Abstract][Full Text] [Related]
5. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Chin-A-Woeng TF; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV Mol Plant Microbe Interact; 2001 Aug; 14(8):1006-15. PubMed ID: 11497461 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of Three Potato Pathogens by Phenazine-Producing Biessy A; Novinscak A; St-Onge R; Léger G; Zboralski A; Filion M mSphere; 2021 Jun; 6(3):e0042721. PubMed ID: 34077259 [TBL] [Abstract][Full Text] [Related]
7. Phenazine and 1-Undecene Producing Tagele SB; Lee HG; Kim SW; Lee YS J Microbiol Biotechnol; 2019 Jan; 29(1):66-78. PubMed ID: 30415529 [TBL] [Abstract][Full Text] [Related]
8. Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. Raio A; Brilli F; Baraldi R; Neri L; Puopolo G Microbiol Res; 2020 Oct; 239():126517. PubMed ID: 32535393 [TBL] [Abstract][Full Text] [Related]
9. Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity. Li J; Yang Y; Dubern JF; Li H; Halliday N; Chernin L; Gao K; Cámara M; Liu X PLoS One; 2015; 10(9):e0137553. PubMed ID: 26379125 [TBL] [Abstract][Full Text] [Related]
10. Endophytic Fungi as Potential Biocontrol Agents against Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D Cells; 2022 Aug; 11(17):. PubMed ID: 36078051 [TBL] [Abstract][Full Text] [Related]
11. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine. Liu K; Hu H; Wang W; Zhang X Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070 [TBL] [Abstract][Full Text] [Related]
12. Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum. Hu W; Gao Q; Hamada MS; Dawood DH; Zheng J; Chen Y; Ma Z Phytopathology; 2014 Dec; 104(12):1289-97. PubMed ID: 24941327 [TBL] [Abstract][Full Text] [Related]
13. Unveiling the multifaceted potential of Guo S; Liu Y; Yin Y; Chen Y; Jia S; Wu T; Liao J; Jiang X; Kareem HA; Li X; Pan J; Wang Y; Shen X Microbiol Spectr; 2024 Oct; 12(10):e0071224. PubMed ID: 39162535 [No Abstract] [Full Text] [Related]
14. The antagonistic potential of peanut endophytic bacteria against Sclerotium rolfsii causing stem rot. Li L; Wang J; Liu D; Li L; Zhen J; Lei G; Wang B; Yang W Braz J Microbiol; 2023 Mar; 54(1):361-370. PubMed ID: 36574205 [TBL] [Abstract][Full Text] [Related]
15. Profiling Metabolites with Antifungal Activities from Endophytic Plant-Beneficial Strains of Sokołowski W; Marek-Kozaczuk M; Sosnowski P; Sajnaga E; Jach ME; Karaś MA Molecules; 2024 Sep; 29(18):. PubMed ID: 39339366 [TBL] [Abstract][Full Text] [Related]
16. Regulation of phenazine-1-carboxamide production by quorum sensing in type strains of Pseudomonas chlororaphis subsp. chlororaphis and Pseudomonas chlororaphis subsp. piscium. Morohoshi T; Yabe N; Yaguchi N; Xie X; Someya N J Biosci Bioeng; 2022 Jun; 133(6):541-546. PubMed ID: 35365429 [TBL] [Abstract][Full Text] [Related]
17. The salt-tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Sun X; Xu Y; Chen L; Jin X; Ni H Microbiol Res; 2021 Apr; 245():126673. PubMed ID: 33429287 [TBL] [Abstract][Full Text] [Related]
18. Production of Antibacterial Questiomycin A in Metabolically Engineered Guo S; Hu H; Wang W; Bilal M; Zhang X J Agric Food Chem; 2022 Jun; 70(25):7742-7750. PubMed ID: 35708224 [No Abstract] [Full Text] [Related]
19. Investigation of the biocontrol mechanism of a novel Dai J; Xu Z; Yang N; Tuerxunjiang H; Shan X; Diao Y; Zhao J; Ma M; Li X; Xiao M; Pei J Appl Environ Microbiol; 2024 Jun; 90(6):e0045524. PubMed ID: 38809045 [TBL] [Abstract][Full Text] [Related]
20. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]