These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34987185)

  • 1. Inferring the distribution of fitness effects in patient-sampled and experimental virus populations: two case studies.
    Morales-Arce AY; Johri P; Jensen JD
    Heredity (Edinb); 2022 Feb; 128(2):79-87. PubMed ID: 34987185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolutionarily stable distribution of fitness effects.
    Rice DP; Good BH; Desai MM
    Genetics; 2015 May; 200(1):321-9. PubMed ID: 25762525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring Genome-Wide Correlations of Mutation Fitness Effects between Populations.
    Huang X; Fortier AL; Coffman AJ; Struck TJ; Irby MN; James JE; León-Burguete JE; Ragsdale AP; Gutenkunst RN
    Mol Biol Evol; 2021 Sep; 38(10):4588-4602. PubMed ID: 34043790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of new mutations on fitness: insights from models and data.
    Bataillon T; Bailey SF
    Ann N Y Acad Sci; 2014 Jul; 1320(1):76-92. PubMed ID: 24891070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Evolving Genetic Architecture Interacts with Hill-Robertson Interference to Determine the Benefit of Sex.
    Whitlock AO; Peck KM; Azevedo RB; Burch CL
    Genetics; 2016 Jun; 203(2):923-36. PubMed ID: 27098911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of mutational robustness in an RNA virus.
    Montville R; Froissart R; Remold SK; Tenaillon O; Turner PE
    PLoS Biol; 2005 Nov; 3(11):e381. PubMed ID: 16248678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring the distributions of fitness effects and proportions of strongly deleterious mutations.
    Charmouh AP; Bocedi G; Hartfield M
    G3 (Bethesda); 2023 Aug; 13(9):. PubMed ID: 37337692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fitness effects of synonymous mutations in DNA and RNA viruses.
    Cuevas JM; Domingo-Calap P; Sanjuán R
    Mol Biol Evol; 2012 Jan; 29(1):17-20. PubMed ID: 21771719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring Demography and Selection in Organisms Characterized by Skewed Offspring Distributions.
    Sackman AM; Harris RB; Jensen JD
    Genetics; 2019 Mar; 211(3):1019-1028. PubMed ID: 30651284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of Distribution of Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data.
    Tataru P; Mollion M; Glémin S; Bataillon T
    Genetics; 2017 Nov; 207(3):1103-1119. PubMed ID: 28951530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii.
    Böndel KB; Kraemer SA; Samuels T; McClean D; Lachapelle J; Ness RW; Colegrave N; Keightley PD
    PLoS Biol; 2019 Jun; 17(6):e3000192. PubMed ID: 31242179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Between but Not Within-Species Variation in the Distribution of Fitness Effects.
    James J; Kastally C; Budde KB; González-Martínez SC; Milesi P; Pyhäjärvi T; Lascoux M;
    Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37832225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species.
    Daigle A; Johri P
    bioRxiv; 2024 May; ():. PubMed ID: 38370745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biophysical protein folding model accounts for most mutational fitness effects in viruses.
    Wylie CS; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2011 Jun; 108(24):9916-21. PubMed ID: 21610162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A framework for inferring fitness landscapes of patient-derived viruses using quasispecies theory.
    Seifert D; Di Giallonardo F; Metzner KJ; Günthard HF; Beerenwinkel N
    Genetics; 2015 Jan; 199(1):191-203. PubMed ID: 25406469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring Parameters of the Distribution of Fitness Effects of New Mutations When Beneficial Mutations Are Strongly Advantageous and Rare.
    Booker TR
    G3 (Bethesda); 2020 Jul; 10(7):2317-2326. PubMed ID: 32371451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational and fitness landscapes of an RNA virus revealed through population sequencing.
    Acevedo A; Brodsky L; Andino R
    Nature; 2014 Jan; 505(7485):686-90. PubMed ID: 24284629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mutational Robustness of Influenza A Virus.
    Visher E; Whitefield SE; McCrone JT; Fitzsimmons W; Lauring AS
    PLoS Pathog; 2016 Aug; 12(8):e1005856. PubMed ID: 27571422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary dynamics of viral escape under antibodies stress: A biophysical model.
    Chéron N; Serohijos AW; Choi JM; Shakhnovich EI
    Protein Sci; 2016 Jul; 25(7):1332-40. PubMed ID: 26939576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.
    Chevereau G; Dravecká M; Batur T; Guvenek A; Ayhan DH; Toprak E; Bollenbach T
    PLoS Biol; 2015; 13(11):e1002299. PubMed ID: 26581035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.