These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34987303)

  • 1. The Potential of Computer Vision-Based Marker-Less Human Motion Analysis for Rehabilitation.
    Hellsten T; Karlsson J; Shamsuzzaman M; Pulkkis G
    Rehabil Process Outcome; 2021; 10():11795727211022330. PubMed ID: 34987303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise quantification from single camera view markerless 3D pose estimation.
    Mercadal-Baudart C; Liu CJ; Farrell G; Boyne M; González Escribano J; Smolic A; Simms C
    Heliyon; 2024 Mar; 10(6):e27596. PubMed ID: 38510055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L; Needham L; McGuigan P; Bilzon J
    PeerJ; 2022; 10():e12995. PubMed ID: 35237469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study of Relative-Pose Estimations from a Monocular Image Sequence in Computer Vision and Photogrammetry.
    Tumurbaatar T; Kim T
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait analysis comparison between manual marking, 2D pose estimation algorithms, and 3D marker-based system.
    Menychtas D; Petrou N; Kansizoglou I; Giannakou E; Grekidis A; Gasteratos A; Gourgoulis V; Douda E; Smilios I; Michalopoulou M; Sirakoulis GC; Aggelousis N
    Front Rehabil Sci; 2023; 4():1238134. PubMed ID: 37744429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y; Lu W; Gan W; Hou W
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UCO Physical Rehabilitation: New Dataset and Study of Human Pose Estimation Methods on Physical Rehabilitation Exercises.
    Aguilar-Ortega R; Berral-Soler R; Jiménez-Velasco I; Romero-Ramírez FJ; García-Marín M; Zafra-Palma J; Muñoz-Salinas R; Medina-Carnicer R; Marín-Jiménez MJ
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Gait Analysis Techniques with Markerless Pose Estimation Based on Smartphone Location.
    Yang J; Park K
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer vision based method for 3D posture estimation of symmetrical lifting.
    Mehrizi R; Peng X; Xu X; Zhang S; Metaxas D; Li K
    J Biomech; 2018 Mar; 69():40-46. PubMed ID: 29398001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of 3D Body Tracking from Monocular 2D Video Feeds in Musculoskeletal Telerehabilitation.
    Clemente C; Chambel G; Silva DCF; Montes AM; Pinto JF; Silva HPD
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective evaluation of HGcnMLP method for markerless 3D pose estimation of musculoskeletal diseases patients based on smartphone monocular video.
    Hu R; Diao Y; Wang Y; Li G; He R; Ning Y; Lou N; Li G; Zhao G
    Front Bioeng Biotechnol; 2023; 11():1335251. PubMed ID: 38264579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling Gait Analysis in the Telemedicine Practice through Portable and Accurate 3D Human Pose Estimation.
    Martini E; Boldo M; Aldegheri S; Valè N; Filippetti M; Smania N; Bertucco M; Picelli A; Bombieri N
    Comput Methods Programs Biomed; 2022 Oct; 225():107016. PubMed ID: 35907374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel encoding element for robust pose estimation using planar fiducials.
    Rijlaarsdam DDW; Zwick M; Kuiper JMH
    Front Robot AI; 2022; 9():838128. PubMed ID: 36093210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation and validation of temporal gait features using a markerless 2D video system.
    Verlekar TT; De Vroey H; Claeys K; Hallez H; Soares LD; Correia PL
    Comput Methods Programs Biomed; 2019 Jul; 175():45-51. PubMed ID: 31104714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Telerehabilitation System in a Home Environment Using Computer Vision.
    Adolf J; Dolezal J; Kutilek P; Hourova M; Hejda J; Milerska I; Lhotska L
    Stud Health Technol Inform; 2020 Sep; 273():142-148. PubMed ID: 33087604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee.
    Bell KM; Onyeukwu C; McClincy MP; Allen M; Bechard L; Mukherjee A; Hartman RA; Smith C; Lynch AD; Irrgang JJ
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30823373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation.
    Cerveri P; Pedotti A; Ferrigno G
    J Biomech; 2005 Nov; 38(11):2228-36. PubMed ID: 16154410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System.
    Colyer SL; Evans M; Cosker DP; Salo AIT
    Sports Med Open; 2018 Jun; 4(1):24. PubMed ID: 29869300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide-angle, monocular head tracking using passive markers.
    Vagvolgyi BP; Jayakumar RP; Madhav MS; Knierim JJ; Cowan NJ
    J Neurosci Methods; 2022 Feb; 368():109453. PubMed ID: 34968626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.