These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34988269)

  • 1. Safety and biocompatibility of a bionic eye: Imaging, intraocular pressure, and histology data.
    Eggenberger SC; James NL; Ho C; Eamegdool SS; Tatarinoff V; Craig NA; Gow BS; Wan S; Dodds CWD; La Hood D; Gilmour A; Donahoe SL; Krockenberger M; Tumuluri K; da Cruz MJ; Grigg JR; McCluskey P; Lovell NH; Madigan MC; Fung AT; Suaning GJ
    Data Brief; 2021 Dec; 39():107634. PubMed ID: 34988269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantation and long-term assessment of the stability and biocompatibility of a novel 98 channel suprachoroidal visual prosthesis in sheep.
    Eggenberger SC; James NL; Ho C; Eamegdool SS; Tatarinoff V; Craig NA; Gow BS; Wan S; Dodds CWD; La Hood D; Gilmour A; Donahoe SL; Krockenberger M; Tumuluri K; da Cruz MJ; Grigg JR; McCluskey P; Lovell NH; Madigan MC; Fung AT; Suaning GJ
    Biomaterials; 2021 Dec; 279():121191. PubMed ID: 34768150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surgical feasibility and biocompatibility of wide-field dual-array suprachoroidal-transretinal stimulation prosthesis in middle-sized animals.
    Lohmann TK; Kanda H; Morimoto T; Endo T; Miyoshi T; Nishida K; Kamei M; Walter P; Fujikado T
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):661-73. PubMed ID: 26194404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safety Studies for a 44-Channel Suprachoroidal Retinal Prosthesis: A Chronic Passive Study.
    Abbott CJ; Nayagam DAX; Luu CD; Epp SB; Williams RA; Salinas-LaRosa CM; Villalobos J; McGowan C; Shivdasani MN; Burns O; Leavens J; Yeoh J; Brandli AA; Thien PC; Zhou J; Feng H; Williams CE; Shepherd RK; Allen PJ
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1410-1424. PubMed ID: 29625464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New epiretinal implant with integrated sensor chips for optical capturing shows a good biocompatibility profile in vitro and in vivo.
    Schaffrath K; Lohmann T; Seifert J; Ingensiep C; Raffelberg P; Waschkowski F; Viga R; Kokozinski R; Mokwa W; Johnen S; Walter P
    Biomed Eng Online; 2021 Oct; 20(1):102. PubMed ID: 34641889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study.
    Nayagam DA; Williams RA; Allen PJ; Shivdasani MN; Luu CD; Salinas-LaRosa CM; Finch S; Ayton LN; Saunders AL; McPhedran M; McGowan C; Villalobos J; Fallon JB; Wise AK; Yeoh J; Xu J; Feng H; Millard R; McWade M; Thien PC; Williams CE; Shepherd RK
    PLoS One; 2014; 9(5):e97182. PubMed ID: 24853376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation.
    Villalobos J; Nayagam DA; Allen PJ; McKelvie P; Luu CD; Ayton LN; Freemantle AL; McPhedran M; Basa M; McGowan CC; Shepherd RK; Williams CE
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3751-62. PubMed ID: 23611996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and efficacy of explanting or replacing suprachoroidal electrode arrays in a feline model.
    Leung RT; Nayagam DA; Williams RA; Allen PJ; Salinas-La Rosa CM; Luu CD; Shivdasani MN; Ayton LN; Basa M; Yeoh J; Saunders AL; Shepherd RK; Williams CE
    Clin Exp Ophthalmol; 2015 Apr; 43(3):247-58. PubMed ID: 25196241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evaluation of the efficacy and safety of a foldable capsular vitreous body in the treatment of severe retinal detachment].
    Yan YN; Tian B; Liu Q; Wei WB
    Zhonghua Yan Ke Za Zhi; 2019 Apr; 55(4):259-266. PubMed ID: 30982287
    [No Abstract]   [Full Text] [Related]  

  • 11. Multimodal Imaging Including Optical Coherence Tomography Angiography of a Patient With Argus II Retinal Prosthesis One Year After Implantation.
    Güven D; Demir M; Özcan D; Kaçar H; Demir ST; Uzun SÜ
    Ophthalmic Surg Lasers Imaging Retina; 2018 Jan; 49(1):55-59. PubMed ID: 29304268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Graphene Electrode for Retinal Implants: An
    Nguyen D; Valet M; Dégardin J; Boucherit L; Illa X; de la Cruz J; Del Corro E; Bousquet J; Garrido JA; Hébert C; Picaud S
    Front Neurosci; 2021; 15():615256. PubMed ID: 33746697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enucleated eye model for intraocular retinal prosthesis implantation.
    Ratanapakorn T; Ameri H; Humayun MS; Weiland JD
    Ophthalmic Surg Lasers Imaging; 2006; 37(4):341-3. PubMed ID: 16898401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical coherence tomography-guided retinal prosthesis design: model of degenerated retinal curvature and thickness for patient-specific devices.
    Opie NL; Ayton LN; Apollo NV; Ganesan K; Guymer RH; Luu CD
    Artif Organs; 2014 Jun; 38(6):E82-94. PubMed ID: 24689741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic implantation of newly developed suprachoroidal-transretinal stimulation prosthesis in dogs.
    Morimoto T; Kamei M; Nishida K; Sakaguchi H; Kanda H; Ikuno Y; Kishima H; Maruo T; Konoma K; Ozawa M; Nishida K; Fujikado T
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6785-92. PubMed ID: 21743012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Magnetic Attachment Method for Bionic Eye Applications.
    Fox K; Meffin H; Burns O; Abbott CJ; Allen PJ; Opie NL; McGowan C; Yeoh J; Ahnood A; Luu CD; Cicione R; Saunders AL; McPhedran M; Cardamone L; Villalobos J; Garrett DJ; Nayagam DA; Apollo NV; Ganesan K; Shivdasani MN; Stacey A; Escudie M; Lichter S; Shepherd RK; Prawer S
    Artif Organs; 2016 Mar; 40(3):E12-24. PubMed ID: 26416723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phakic intraocular lenses for the treatment of refractive errors: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2009; 9(14):1-120. PubMed ID: 23074518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the bionic eye--the retina implant: surgical, opthalmological and histopathological perspectives.
    Alteheld N; Roessler G; Walter P
    Acta Neurochir Suppl; 2007; 97(Pt 2):487-93. PubMed ID: 17691339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantation of silicon chip microphotodiode arrays into the cat subretinal space.
    Chow AY; Pardue MT; Chow VY; Peyman GA; Liang C; Perlman JI; Peachey NS
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):86-95. PubMed ID: 11482368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial.
    Roessler G; Laube T; Brockmann C; Kirschkamp T; Mazinani B; Goertz M; Koch C; Krisch I; Sellhaus B; Trieu HK; Weis J; Bornfeld N; Röthgen H; Messner A; Mokwa W; Walter P
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3003-8. PubMed ID: 19420330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.