These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34988661)

  • 21. Smartphone Sensor-Based Human Motion Characterization with Neural Stochastic Differential Equations and Transformer Model.
    Lee J; Kim T; Park J; Park J
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Deep Generative Decoder: MAP estimation of representations improves modelling of single-cell RNA data.
    Schuster V; Krogh A
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37572301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Attribute Augmented Network Embedding Based on Generative Adversarial Nets.
    Zheng C; Pan L; Wu P
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3473-3487. PubMed ID: 34623283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic single cell RNA sequencing data from small pilot studies using deep generative models.
    Treppner M; Salas-Bastos A; Hess M; Lenz S; Vogel T; Binder H
    Sci Rep; 2021 Apr; 11(1):9403. PubMed ID: 33931726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Deep Learning Generative Adversarial Random Neural Network in data marketplaces: The digital creative.
    Serrano W
    Neural Netw; 2023 Aug; 165():420-434. PubMed ID: 37331232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of synthetic promoters for cyanobacteria with generative deep-learning model.
    Seo E; Choi YN; Shin YR; Kim D; Lee JW
    Nucleic Acids Res; 2023 Jul; 51(13):7071-7082. PubMed ID: 37246641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leveraging deep learning algorithms for synthetic data generation to design and analyze biological networks.
    Achuthan S; Chatterjee R; Kotnala S; Mohanty A; Bhattacharya S; Salgia R; Kulkarni P
    J Biosci; 2022; 47():. PubMed ID: 36222162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning Applied to Ligand-Based De Novo Drug Design.
    Palazzesi F; Pozzan A
    Methods Mol Biol; 2022; 2390():273-299. PubMed ID: 34731474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discriminative and generative models for anatomical shape analysis on point clouds with deep neural networks.
    Gutiérrez-Becker B; Sarasua I; Wachinger C
    Med Image Anal; 2021 Jan; 67():101852. PubMed ID: 33129154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics.
    Seninge L; Anastopoulos I; Ding H; Stuart J
    Nat Commun; 2021 Sep; 12(1):5684. PubMed ID: 34584103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning brain representation using recurrent Wasserstein generative adversarial net.
    Qiang N; Dong Q; Liang H; Li J; Zhang S; Zhang C; Ge B; Sun Y; Gao J; Liu T; Yue H; Zhao S
    Comput Methods Programs Biomed; 2022 Aug; 223():106979. PubMed ID: 35792364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generative Restricted Kernel Machines: A framework for multi-view generation and disentangled feature learning.
    Pandey A; Schreurs J; Suykens JAK
    Neural Netw; 2021 Mar; 135():177-191. PubMed ID: 33395588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating object compositionality in Generative Adversarial Networks.
    van Steenkiste S; Kurach K; Schmidhuber J; Gelly S
    Neural Netw; 2020 Oct; 130():309-325. PubMed ID: 32736226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supervising the Decoder of Variational Autoencoders to Improve Scientific Utility.
    Tu L; Talbot A; Gallagher NM; Carlson DE
    IEEE Trans Signal Process; 2022; 70():5954-5966. PubMed ID: 36777018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation.
    Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ
    J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep active inference.
    Ueltzhöffer K
    Biol Cybern; 2018 Dec; 112(6):547-573. PubMed ID: 30350226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders
    van de Leur RR; Bos MN; Taha K; Sammani A; Yeung MW; van Duijvenboden S; Lambiase PD; Hassink RJ; van der Harst P; Doevendans PA; Gupta DK; van Es R
    Eur Heart J Digit Health; 2022 Sep; 3(3):390-404. PubMed ID: 36712164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semisupervised Generative Autoencoder for Single-Cell Data.
    Trong TN; Mehtonen J; González G; Kramer R; Hautamäki V; Heinäniemi M
    J Comput Biol; 2020 Aug; 27(8):1190-1203. PubMed ID: 31794242
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.