These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34988758)

  • 1. Entropy and distance maps-guided segmentation of articular cartilage: data from the Osteoarthritis Initiative.
    Li Z; Chen K; Liu P; Chen X; Zheng G
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):553-560. PubMed ID: 34988758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative.
    Gatti AA; Maly MR
    MAGMA; 2021 Dec; 34(6):859-875. PubMed ID: 34101071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated, level set-based segmentation for knee MRIs using an adaptive force function and template: data from the osteoarthritis initiative.
    Ahn C; Bui TD; Lee YW; Shin J; Park H
    Biomed Eng Online; 2016 Aug; 15(1):99. PubMed ID: 27558127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated tibiofemoral joint segmentation based on deeply supervised 2D-3D ensemble U-Net: Data from the Osteoarthritis Initiative.
    Latif MHA; Faye I
    Artif Intell Med; 2021 Dec; 122():102213. PubMed ID: 34823835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.
    Norman B; Pedoia V; Majumdar S
    Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on segmentation of knee articular cartilage: from conventional methods towards deep learning.
    Ebrahimkhani S; Jaward MH; Cicuttini FM; Dharmaratne A; Wang Y; de Herrera AGS
    Artif Intell Med; 2020 Jun; 106():101851. PubMed ID: 32593389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved-Mask R-CNN: Towards an accurate generic MSK MRI instance segmentation platform (data from the Osteoarthritis Initiative).
    Felfeliyan B; Hareendranathan A; Kuntze G; Jaremko JL; Ronsky JL
    Comput Med Imaging Graph; 2022 Apr; 97():102056. PubMed ID: 35364383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative.
    Deng Y; You L; Wang Y; Zhou X
    J Digit Imaging; 2021 Aug; 34(4):833-840. PubMed ID: 34031789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.
    Neubert A; Yang Z; Engstrom C; Xia Y; Strudwick MW; Chandra SS; Fripp J; Crozier S
    Med Phys; 2016 Oct; 43(10):5370. PubMed ID: 27782728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous super-resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative.
    Neubert A; Bourgeat P; Wood J; Engstrom C; Chandra SS; Crozier S; Fripp J
    Med Phys; 2020 Oct; 47(10):4939-4948. PubMed ID: 32745260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SUSAN: segment unannotated image structure using adversarial network.
    Liu F
    Magn Reson Med; 2019 May; 81(5):3330-3345. PubMed ID: 30536427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Automatic Knee Joint Segmentation and Quantitative Analysis for Osteoarthritis from Magnetic Resonance (MR) Images Using a Deep Learning Model.
    Tang X; Guo D; Liu A; Wu D; Liu J; Xu N; Qin Y
    Med Sci Monit; 2022 Jun; 28():e936733. PubMed ID: 35698440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified radial-search algorithm for segmentation of tibiofemoral cartilage in MR images of patients with subchondral lesion.
    Thaha R; Jogi SP; Rajan S; Mahajan V; Venugopal VK; Mehndiratta A; Singh A
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):403-413. PubMed ID: 31927688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative.
    Ambellan F; Tack A; Ehlke M; Zachow S
    Med Image Anal; 2019 Feb; 52():109-118. PubMed ID: 30529224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LOGISMOS--layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint.
    Yin Y; Zhang X; Williams R; Wu X; Anderson DD; Sonka M
    IEEE Trans Med Imaging; 2010 Dec; 29(12):2023-37. PubMed ID: 20643602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry.
    Schmidt AM; Desai AD; Watkins LE; Crowder HA; Black MS; Mazzoli V; Rubin EB; Lu Q; MacKay JW; Boutin RD; Kogan F; Gold GE; Hargreaves BA; Chaudhari AS
    J Magn Reson Imaging; 2023 Apr; 57(4):1029-1039. PubMed ID: 35852498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: Data from the Osteoarthritis Initiative.
    Panfilov E; Tiulpin A; Nieminen MT; Saarakkala S; Casula V
    J Orthop Res; 2022 May; 40(5):1113-1124. PubMed ID: 34324223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KCB-Net: A 3D knee cartilage and bone segmentation network via sparse annotation.
    Peng Y; Zheng H; Liang P; Zhang L; Zaman F; Wu X; Sonka M; Chen DZ
    Med Image Anal; 2022 Nov; 82():102574. PubMed ID: 36126403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling.
    Öztürk CN; Albayrak S
    Comput Biol Med; 2016 May; 72():90-107. PubMed ID: 27017069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.