BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34989397)

  • 1. The resting frequency of echolocation signals changes with body temperature in the hipposiderid bat Hipposideros armiger.
    Schoeppler D; Denzinger A; Schnitzler HU
    J Exp Biol; 2022 Feb; 225(3):. PubMed ID: 34989397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise Doppler shift compensation in the hipposiderid bat, Hipposideros armiger.
    Schoeppler D; Schnitzler HU; Denzinger A
    Sci Rep; 2018 Mar; 8(1):4598. PubMed ID: 29545520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labile cochlear tuning in the mustached bat. I. Concomitant shifts in biosonar emission frequency.
    Huffman RF; Henson OW
    J Comp Physiol A; 1993 Jan; 171(6):725-34. PubMed ID: 8441121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of echolocation calls in the mustached bat, Pteronotus parnellii.
    Vater M; Kössl M; Foeller E; Coro F; Mora E; Russell IJ
    J Neurophysiol; 2003 Oct; 90(4):2274-90. PubMed ID: 14534267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation.
    Gaioni SJ; Riquimaroux H; Suga N
    J Neurophysiol; 1990 Dec; 64(6):1801-17. PubMed ID: 2074465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labile cochlear tuning in the mustached bat. II. Concomitant shifts in neural tuning.
    Huffman RF; Henson OW
    J Comp Physiol A; 1993 Jan; 171(6):735-48. PubMed ID: 8441122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The personalized auditory cortex of the mustached bat: adaptation for echolocation.
    Suga N; Niwa H; Taniguchi I; Margoliash D
    J Neurophysiol; 1987 Oct; 58(4):643-54. PubMed ID: 3681389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear resonance in the mustached bat: behavioral adaptations.
    Henson OW; Koplas PA; Keating AW; Huffman RF; Henson MM
    Hear Res; 1990 Dec; 50(1-2):259-73. PubMed ID: 2076977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.
    Hiryu S; Katsura K; Lin LK; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2005 Dec; 118(6):3927-33. PubMed ID: 16419835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.
    Metzner W; Zhang S; Smotherman M
    J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmitter and receiver of the low frequency horseshoe bat Rhinolophus paradoxolophus are functionally matched for fluttering target detection.
    Schoeppler D; Kost K; Schnitzler HU; Denzinger A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):191-202. PubMed ID: 36136120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical adaptations for echolocation in the cochlea of the bat Hipposideros lankadiva.
    Foeller E; Kössl M
    J Comp Physiol A; 2000 Sep; 186(9):859-70. PubMed ID: 11085639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinolophus rouxi and Pteronotus parnellii).
    Henson OW; Schuller G; Vater M
    J Comp Physiol A; 1985 Nov; 157(5):587-97. PubMed ID: 3837100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different auditory feedback control for echolocation and communication in horseshoe bats.
    Liu Y; Feng J; Metzner W
    PLoS One; 2013; 8(4):e62710. PubMed ID: 23638137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal maturation of primary auditory cortex in the mustached bat, Pteronotus parnellii.
    Vater M; Foeller E; Mora EC; Coro F; Russell IJ; Kössl M
    J Neurophysiol; 2010 May; 103(5):2339-54. PubMed ID: 20181735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals.
    Schnitzler HU; Denzinger A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):541-59. PubMed ID: 20857119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information.
    Olsen JF; Suga N
    J Neurophysiol; 1991 Jun; 65(6):1254-74. PubMed ID: 1875241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High duty cycle to low duty cycle: echolocation behaviour of the hipposiderid bat Coelops frithii.
    Ho YY; Fang YP; Chou CH; Cheng HC; Chang HW
    PLoS One; 2013; 8(5):e62938. PubMed ID: 23717396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Audiovocal interactions during development? Vocalisation in deafened young horseshoe bats vs. audition in vocalisation-impaired bats.
    Rübsamen R; Schäfer M
    J Comp Physiol A; 1990 Dec; 167(6):771-84. PubMed ID: 2086791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Characterization and comparison of the doppler compensation acoustic wave in Hipposideros armiger].
    Wang XZ; Hu KL; Wei L; Xu D; Zhang LB
    Dongwuxue Yanjiu; 2010 Dec; 31(6):663-9. PubMed ID: 21174358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.