BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34989569)

  • 1. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities.
    Mueller E; Poulin I; Bodnaryk WJ; Hoare T
    Biomacromolecules; 2022 Mar; 23(3):619-640. PubMed ID: 34989569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications.
    Gopinathan J; Noh I
    Tissue Eng Regen Med; 2018 Oct; 15(5):531-546. PubMed ID: 30603577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Click chemistry for 3D bioprinting.
    Nie L; Sun Y; Okoro OV; Deng Y; Jiang G; Shavandi A
    Mater Horiz; 2023 Jul; 10(8):2727-2763. PubMed ID: 37170645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing.
    Hao L; Tao X; Feng M; Zhou K; He Y; Yang J; Mao H; Gu Z
    ACS Appl Mater Interfaces; 2023 May; 15(20):24034-24046. PubMed ID: 37159919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering.
    Abdollahiyan P; Oroojalian F; Mokhtarzadeh A; de la Guardia M
    Biotechnol J; 2020 Dec; 15(12):e2000095. PubMed ID: 32869529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths.
    Zhou K; Sun Y; Yang J; Mao H; Gu Z
    J Mater Chem B; 2022 Mar; 10(12):1897-1907. PubMed ID: 35212327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents.
    Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL
    Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoengineered Granular Hydrogel Bioinks with Preserved Interconnected Microporosity for Extrusion Bioprinting.
    Ataie Z; Kheirabadi S; Zhang JW; Kedzierski A; Petrosky C; Jiang R; Vollberg C; Sheikhi A
    Small; 2022 Sep; 18(37):e2202390. PubMed ID: 35922399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRESH Bioprinting of Dynamic Hydrazone-Cross-Linked Synthetic Hydrogels.
    Mueller E; Xu F; Hoare T
    Biomacromolecules; 2022 Nov; 23(11):4883-4895. PubMed ID: 36206528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Polymeric Nanofibers Used for 3D-Printed Scaffolds on Cellular Activity in Tissue Engineering: A Review.
    Kharaghani D; Kaffashsaei E; Haider MK; Kim IS
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of photo-crosslinkable platelet lysate-based hydrogels for 3D printing and tissue engineering.
    Min SJ; Lee JS; Nah H; Kim SH; Moon HJ; Reis RL; Kwon IK; Heo DN
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34330124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogel-Based Bioinks for Cell Electrowriting of Well-Organized Living Structures with Micrometer-Scale Resolution.
    Castilho M; Levato R; Bernal PN; de Ruijter M; Sheng CY; van Duijn J; Piluso S; Ito K; Malda J
    Biomacromolecules; 2021 Feb; 22(2):855-866. PubMed ID: 33412840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.