These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 34989888)
1. Hydrolytic enzyme production from açai palm (Euterpe precatoria) endophytic fungi and characterization of the amylolytic and cellulolytic extracts. Batista BN; Matias RR; Oliveira RLE; Albuquerque PM World J Microbiol Biotechnol; 2022 Jan; 38(2):30. PubMed ID: 34989888 [TBL] [Abstract][Full Text] [Related]
2. Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. Bezerra JD; Santos MG; Svedese VM; Lima DM; Fernandes MJ; Paiva LM; Souza-Motta CM World J Microbiol Biotechnol; 2012 May; 28(5):1989-95. PubMed ID: 22806020 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic activities in different strains isolated from healthy and brittle leaf disease affected date palm leaves: study of amylase production conditions. Mouna J; Imen F; Choba Ines B; Nourredine D; Adel K; Néji G Appl Biochem Biotechnol; 2015 Feb; 175(4):2075-86. PubMed ID: 25432343 [TBL] [Abstract][Full Text] [Related]
4. Molecular phylogeny and biotechnological potential of bacterial endophytes associated with Malpighia emarginata. Specian V; Costa AT; Felber AC; Polonio JC; Azevedo JL; Pamphile JA Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173262 [TBL] [Abstract][Full Text] [Related]
5. Bioprospecting of endophytic fungi from semidesert candelilla (Euphorbia antisyphilitica Zucc): Potential for extracellular enzyme production. Núñez-García IC; Martínez-Ávila GCG; González-Herrera SM; Tafolla-Arellano JC; Rutiaga-Quiñones OM J Basic Microbiol; 2024 Jul; 64(7):e2400049. PubMed ID: 38715338 [TBL] [Abstract][Full Text] [Related]
6. Sena IS; Ferreira AM; Marinho VH; E Holanda FH; Borges SF; de Souza AA; de Carvalho R Koga R; Lima AL; Florentino AC; Ferreira IM Microorganisms; 2022 Dec; 10(12):. PubMed ID: 36557647 [TBL] [Abstract][Full Text] [Related]
7. Characterization of cellulases of fungal endophytes isolated from Espeletia spp. Cabezas L; Calderon C; Medina LM; Bahamon I; Cardenas M; Bernal AJ; Gonzalez A; Restrepo S J Microbiol; 2012 Dec; 50(6):1009-13. PubMed ID: 23274988 [TBL] [Abstract][Full Text] [Related]
10. Extracellular enzymatic profiles and taxonomic identification of endophytic fungi isolated from four plant species. Alberto RN; Costa AT; Polonio JC; Santos MS; Rhoden SA; Azevedo JL; Pamphile JA Genet Mol Res; 2016 Nov; 15(4):. PubMed ID: 27819729 [TBL] [Abstract][Full Text] [Related]
11. Influence of coloured lights on growth and enzyme production of beneficial endophytic fungi. Ting ASY; Gan PT Int Microbiol; 2024 Oct; 27(5):1405-1416. PubMed ID: 38277111 [TBL] [Abstract][Full Text] [Related]
12. Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. El-Bondkly AM; El-Gendy MM Antonie Van Leeuwenhoek; 2012 Feb; 101(2):331-46. PubMed ID: 21898149 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of thermostable and alkali-tolerant cellulase from litter endophytic fungus Bartalinia pondoensis. Yadav R; Vasundhara M; Rajamani T; Suryanarayanan TS; Reddy SM Folia Microbiol (Praha); 2022 Dec; 67(6):955-964. PubMed ID: 35906455 [TBL] [Abstract][Full Text] [Related]
14. Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. Carrasco M; Villarreal P; Barahona S; Alcaíno J; Cifuentes V; Baeza M BMC Microbiol; 2016 Feb; 16():21. PubMed ID: 26895625 [TBL] [Abstract][Full Text] [Related]
15. Phylogenetic Analysis and Biological Evaluation of Marine Endophytic Fungi Derived from Red Sea Sponge Hyrtios erectus. El-Gendy MMAA; Yahya SMM; Hamed AR; Soltan MM; El-Bondkly AMA Appl Biochem Biotechnol; 2018 Jul; 185(3):755-777. PubMed ID: 29327320 [TBL] [Abstract][Full Text] [Related]
16. Fungal endophytic community associated with Hevea spp.: diversity, enzymatic activity, and biocontrol potential. de Oliveira Amaral A; E Ferreira AFTAF; da Silva Bentes JL Braz J Microbiol; 2022 Jun; 53(2):857-872. PubMed ID: 35247168 [TBL] [Abstract][Full Text] [Related]
17. Communities of culturable freshwater fungi present in Antarctic lakes and detection of their low-temperature-active enzymes. de Souza LMD; Ogaki MB; Teixeira EAA; de Menezes GCA; Convey P; Rosa CA; Rosa LH Braz J Microbiol; 2023 Sep; 54(3):1923-1933. PubMed ID: 36274089 [TBL] [Abstract][Full Text] [Related]
18. Lasiodiplodia theobromae as a Producer of Biotechnologically Relevant Enzymes. Félix C; Libório S; Nunes M; Félix R; Duarte AS; Alves A; Esteves AC Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29360737 [TBL] [Abstract][Full Text] [Related]
19. Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Esteves AC; Saraiva M; Correia A; Alves A Can J Microbiol; 2014 May; 60(5):332-42. PubMed ID: 24802941 [TBL] [Abstract][Full Text] [Related]
20. Grape marcs as unexplored source of new yeasts for future biotechnological applications. Lorenzo F; Viviana C; Alessio G; Marina B; Sergio C World J Microbiol Biotechnol; 2013 Sep; 29(9):1551-62. PubMed ID: 23508399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]