BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34990128)

  • 21. Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies.
    Wei W; Chang C; Yang T; Liu J; Tang H; Zhang J; Li Y; Xu F; Zhang Z; Li JF; Tang G
    J Am Chem Soc; 2018 Jan; 140(1):499-505. PubMed ID: 29243922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene inclusion induced ultralow thermal conductivity and improved figure of merit in p-type SnSe.
    Chen L; Zhao W; Li M; Yang G; Nazrul Islam SMK; Mitchell DRG; Cheng Z; Wang X
    Nanoscale; 2020 Jun; 12(24):12760-12766. PubMed ID: 32537621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ferroelectric Instability Induced Ultralow Thermal Conductivity and High Thermoelectric Performance in Rhombohedral
    Sarkar D; Ghosh T; Roychowdhury S; Arora R; Sajan S; Sheet G; Waghmare UV; Biswas K
    J Am Chem Soc; 2020 Jul; 142(28):12237-12244. PubMed ID: 32571016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D charge and 2D phonon transports leading to high out-of-plane
    Chang C; Wu M; He D; Pei Y; Wu CF; Wu X; Yu H; Zhu F; Wang K; Chen Y; Huang L; Li JF; He J; Zhao LD
    Science; 2018 May; 360(6390):778-783. PubMed ID: 29773748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy Doping by Bromine to Improve the Thermoelectric Properties of n-type Polycrystalline SnSe.
    Li S; Wang Y; Chen C; Li X; Xue W; Wang X; Zhang Z; Cao F; Sui J; Liu X; Zhang Q
    Adv Sci (Weinh); 2018 Sep; 5(9):1800598. PubMed ID: 30250800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modular Nanostructures Facilitate Low Thermal Conductivity and Ultra-High Thermoelectric Performance in n-Type SnSe.
    Chandra S; Bhat U; Dutta P; Bhardwaj A; Datta R; Biswas K
    Adv Mater; 2022 Oct; 34(40):e2203725. PubMed ID: 36028167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe.
    Karthikeyan V; Oo SL; Surjadi JU; Li X; Theja VCS; Kannan V; Lau SC; Lu Y; Lam KH; Roy VAL
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58701-58711. PubMed ID: 34851624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-Plane Anisotropies of Polarized Raman Response and Electrical Conductivity in Layered Tin Selenide.
    Xu X; Song Q; Wang H; Li P; Zhang K; Wang Y; Yuan K; Yang Z; Ye Y; Dai L
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12601-12607. PubMed ID: 28318225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attosecond-Resolved Coherent Control of Lattice Vibrations in Thermoelectric SnSe.
    Yu J; Han Y; Zhang H; Misochko OV; Nakamura KG; Hu J
    J Phys Chem Lett; 2022 Mar; 13(11):2584-2590. PubMed ID: 35289629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct visualization of polaron formation in the thermoelectric SnSe.
    René de Cotret LP; Otto MR; Pöhls JH; Luo Z; Kanatzidis MG; Siwick BJ
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35012983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermoelectric properties of SnSe nanowires with different diameters.
    Hernandez JA; Ruiz A; Fonseca LF; Pettes MT; Jose-Yacaman M; Benitez A
    Sci Rep; 2018 Aug; 8(1):11966. PubMed ID: 30097631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure and phase transition of thermoelectric SnSe.
    Sist M; Zhang J; Brummerstedt Iversen B
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Jun; 72(Pt 3):310-6. PubMed ID: 27240762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature.
    Lee YK; Ahn K; Cha J; Zhou C; Kim HS; Choi G; Chae SI; Park JH; Cho SP; Park SH; Sung YE; Lee WB; Hyeon T; Chung I
    J Am Chem Soc; 2017 Aug; 139(31):10887-10896. PubMed ID: 28708407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe.
    Zhao LD; Tan G; Hao S; He J; Pei Y; Chi H; Wang H; Gong S; Xu H; Dravid VP; Uher C; Snyder GJ; Wolverton C; Kanatzidis MG
    Science; 2016 Jan; 351(6269):141-4. PubMed ID: 26612831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realizing High Figure of Merit in Phase-Separated Polycrystalline Sn
    Tang G; Wei W; Zhang J; Li Y; Wang X; Xu G; Chang C; Wang Z; Du Y; Zhao LD
    J Am Chem Soc; 2016 Oct; 138(41):13647-13654. PubMed ID: 27709927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fully 3D Printed Tin Selenide (SnSe) Thermoelectric Generators with Alternating
    Burton MR; Howells G; Mehraban S; McGettrick JD; Lavery N; Carnie MJ
    ACS Appl Energy Mater; 2023 May; 6(10):5498-5507. PubMed ID: 37234971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tin Selenide (SnSe): Growth, Properties, and Applications.
    Shi W; Gao M; Wei J; Gao J; Fan C; Ashalley E; Li H; Wang Z
    Adv Sci (Weinh); 2018 Apr; 5(4):1700602. PubMed ID: 29721411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond Electron Diffraction Reveals Local Disorder and Local Anharmonicity in Thermoelectric SnSe.
    Li J; Qi Y; Yang Q; Yue L; Yao C; Chen Z; Meng S; Xiang D; Cao J
    Adv Mater; 2024 Jun; 36(23):e2313742. PubMed ID: 38444186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallographically textured SnSe nanomaterials produced from the liquid phase sintering of nanocrystals.
    Li M; Liu Y; Zhang Y; Zuo Y; Li J; Lim KH; Cadavid D; Ng KM; Cabot A
    Dalton Trans; 2019 Mar; 48(11):3641-3647. PubMed ID: 30758366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tin Selenide Molecular Precursor for the Solution Processing of Thermoelectric Materials and Devices.
    Zhang Y; Liu Y; Xing C; Zhang T; Li M; Pacios M; Yu X; Arbiol J; Llorca J; Cadavid D; Ibáñez M; Cabot A
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27104-27111. PubMed ID: 32437128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.