These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 34990548)
1. Nuclear Magnetic Resonance Spectra and AMBER OL3 and ROC-RNA Simulations of UCUCGU Reveal Force Field Strengths and Weaknesses for Single-Stranded RNA. Zhao J; Kennedy SD; Turner DH J Chem Theory Comput; 2022 Feb; 18(2):1241-1254. PubMed ID: 34990548 [TBL] [Abstract][Full Text] [Related]
2. Nuclear Magnetic Resonance of Single-Stranded RNAs and DNAs of CAAU and UCAAUC as Benchmarks for Molecular Dynamics Simulations. Zhao J; Kennedy SD; Berger KD; Turner DH J Chem Theory Comput; 2020 Mar; 16(3):1968-1984. PubMed ID: 31904966 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking AMBER force fields for RNA: comparisons to NMR spectra for single-stranded r(GACC) are improved by revised χ torsions. Yildirim I; Stern HA; Tubbs JD; Kennedy SD; Turner DH J Phys Chem B; 2011 Jul; 115(29):9261-70. PubMed ID: 21721539 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. Ditzler MA; Otyepka M; Sponer J; Walter NG Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142 [TBL] [Abstract][Full Text] [Related]
5. The nuclear magnetic resonance of CCCC RNA reveals a right-handed helix, and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics. Tubbs JD; Condon DE; Kennedy SD; Hauser M; Bevilacqua PC; Turner DH Biochemistry; 2013 Feb; 52(6):996-1010. PubMed ID: 23286901 [TBL] [Abstract][Full Text] [Related]
6. Assessing the Current State of Amber Force Field Modifications for DNA. Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587 [TBL] [Abstract][Full Text] [Related]
7. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine. Yildirim I; Stern HA; Kennedy SD; Tubbs JD; Turner DH J Chem Theory Comput; 2010 May; 6(5):1520-1531. PubMed ID: 20463845 [TBL] [Abstract][Full Text] [Related]
8. Improving Computational Predictions of Single-Stranded RNA Tetramers with Revised α/γ Torsional Parameters for the Amber Force Field. Wales DJ; Yildirim I J Phys Chem B; 2017 Apr; 121(14):2989-2999. PubMed ID: 28319659 [TBL] [Abstract][Full Text] [Related]
9. Simple Adjustment of Intranucleotide Base-Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations. Mlýnský V; Kührová P; Stadlbauer P; Krepl M; Otyepka M; Banáš P; Šponer J J Chem Theory Comput; 2023 Nov; 19(22):8423-8433. PubMed ID: 37944118 [TBL] [Abstract][Full Text] [Related]
10. Structural fidelity and NMR relaxation analysis in a prototype RNA hairpin. Giambaşu GM; York DM; Case DA RNA; 2015 May; 21(5):963-74. PubMed ID: 25805858 [TBL] [Abstract][Full Text] [Related]
11. Disagreement Between the Structure of the dTpT Thymine Pair Determined by NMR and Molecular Dynamics Simulations Using Amber 14 Force Fields. Nganou C; Kennedy SD; McCamant DW J Phys Chem B; 2016 Feb; 120(7):1250-8. PubMed ID: 26836489 [TBL] [Abstract][Full Text] [Related]
12. Adjusting the Energy Profile for CH-O Interactions Leads to Improved Stability of RNA Stem-Loop Structures in MD Simulations. Raguette LE; Gunasekera SS; Diaz Ventura RI; Aminov E; Linzer JT; Parwana D; Wu Q; Simmerling C; Nagan MC J Phys Chem B; 2024 Aug; 128(33):7921-7933. PubMed ID: 39110091 [TBL] [Abstract][Full Text] [Related]
13. Improvement of RNA Simulations with Torsional Revisions of the AMBER Force Field. Yildirim I Methods Mol Biol; 2019; 2022():55-74. PubMed ID: 31396899 [TBL] [Abstract][Full Text] [Related]
14. RNA force field with accuracy comparable to state-of-the-art protein force fields. Tan D; Piana S; Dirks RM; Shaw DE Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1346-E1355. PubMed ID: 29378935 [TBL] [Abstract][Full Text] [Related]
15. Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. Mlýnský V; Kührová P; Kühr T; Otyepka M; Bussi G; Banáš P; Šponer J J Chem Theory Comput; 2020 Jun; 16(6):3936-3946. PubMed ID: 32384244 [TBL] [Abstract][Full Text] [Related]
16. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. Tucker MR; Piana S; Tan D; LeVine MV; Shaw DE J Phys Chem B; 2022 Jun; 126(24):4442-4457. PubMed ID: 35694853 [TBL] [Abstract][Full Text] [Related]
17. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations. Watts CR; Gregory A; Frisbie C; Lovas S Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155 [TBL] [Abstract][Full Text] [Related]
18. NMR structures of r(GCAGGCGUGC)2 and determinants of stability for single guanosine-guanosine base pairs. Burkard ME; Turner DH Biochemistry; 2000 Sep; 39(38):11748-62. PubMed ID: 10995243 [TBL] [Abstract][Full Text] [Related]
19. Empirical Corrections to the Amber RNA Force Field with Target Metadynamics. Gil-Ley A; Bottaro S; Bussi G J Chem Theory Comput; 2016 Jun; 12(6):2790-8. PubMed ID: 27153317 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure. Henriksen NM; Davis DR; Cheatham TE J Biomol NMR; 2012 Aug; 53(4):321-39. PubMed ID: 22714631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]