These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34990664)

  • 21. Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change.
    Knapp AK; Ciais P; Smith MD
    New Phytol; 2017 Apr; 214(1):41-47. PubMed ID: 28001290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soil moisture drives the spatiotemporal patterns of asymmetry in vegetation productivity responses across China.
    Chang Q; He H; Ren X; Zhang L; Feng L; Lv Y; Zhang M; Xu Q; Liu W; Zhang Y; Wang T
    Sci Total Environ; 2023 Jan; 855():158819. PubMed ID: 36116661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Spatiotemporal variation of productivity and carbon use efficiency of forests in Northeast China from 2000 to 2015.].
    Chen Z
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1625-1632. PubMed ID: 31107019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reducing model uncertainty of climate change impacts on high latitude carbon assimilation.
    Rogers A; Serbin SP; Way DA
    Glob Chang Biol; 2022 Feb; 28(4):1222-1247. PubMed ID: 34689389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential responses of ecotypes to climate in a ubiquitous Arctic sedge: implications for future ecosystem C cycling.
    Curasi SR; Parker TC; Rocha AV; Moody ML; Tang J; Fetcher N
    New Phytol; 2019 Jul; 223(1):180-192. PubMed ID: 30883787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production.
    Zhang Y; Xiao X; Guanter L; Zhou S; Ciais P; Joiner J; Sitch S; Wu X; Nabel J; Dong J; Kato E; Jain AK; Wiltshire A; Stocker BD
    Sci Rep; 2016 Dec; 6():39748. PubMed ID: 28008960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal, interannual and decadal drivers of tree and grass productivity in an Australian tropical savanna.
    Moore CE; Beringer J; Donohue RJ; Evans B; Exbrayat JF; Hutley LB; Tapper NJ
    Glob Chang Biol; 2018 Jun; 24(6):2530-2544. PubMed ID: 29488666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying the impacts of land cover change on gross primary productivity globally.
    Krause A; Papastefanou P; Gregor K; Layritz LS; Zang CS; Buras A; Li X; Xiao J; Rammig A
    Sci Rep; 2022 Nov; 12(1):18398. PubMed ID: 36319733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Spatio-temporal dynamics of gross primary productivity in China from 1982 to 2017 based on different datasets].
    Cao YJ; Song ZH; Wu ZT; DU ZQ
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2644-2652. PubMed ID: 36384598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unchanged carbon balance driven by equivalent responses of production and respiration to climate change in a mixed-grass prairie.
    Xu X; Shi Z; Chen X; Lin Y; Niu S; Jiang L; Luo R; Luo Y
    Glob Chang Biol; 2016 May; 22(5):1857-66. PubMed ID: 26668117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating terrestrial gross primary productivity in water limited ecosystems across Africa using the Southampton Carbon Flux (SCARF) model.
    Chiwara P; Ogutu BO; Dash J; Milton EJ; Ardö J; Saunders M; Nicolini G
    Sci Total Environ; 2018 Jul; 630():1472-1483. PubMed ID: 29727926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Joint control of terrestrial gross primary productivity by plant phenology and physiology.
    Xia J; Niu S; Ciais P; Janssens IA; Chen J; Ammann C; Arain A; Blanken PD; Cescatti A; Bonal D; Buchmann N; Curtis PS; Chen S; Dong J; Flanagan LB; Frankenberg C; Georgiadis T; Gough CM; Hui D; Kiely G; Li J; Lund M; Magliulo V; Marcolla B; Merbold L; Montagnani L; Moors EJ; Olesen JE; Piao S; Raschi A; Roupsard O; Suyker AE; Urbaniak M; Vaccari FP; Varlagin A; Vesala T; Wilkinson M; Weng E; Wohlfahrt G; Yan L; Luo Y
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2788-93. PubMed ID: 25730847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency.
    Du L; Mikle N; Zou Z; Huang Y; Shi Z; Jiang L; McCarthy HR; Liang J; Luo Y
    Sci Total Environ; 2018 Jul; 628-629():611-620. PubMed ID: 29454202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis.
    Barman R; Jain AK; Liang M
    Glob Chang Biol; 2014 May; 20(5):1394-411. PubMed ID: 24273031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying the dominant climate-driven uncertainties in modeling gross primary productivity.
    Ma Y; Yue X; Zhou H; Gong C; Lei Y; Tian C; Cao Y
    Sci Total Environ; 2021 Dec; 800():149518. PubMed ID: 34392204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A physiology-based Earth observation model indicates stagnation in the global gross primary production during recent decades.
    Tagesson T; Tian F; Schurgers G; Horion S; Scholes R; Ahlström A; Ardö J; Moreno A; Madani N; Olin S; Fensholt R
    Glob Chang Biol; 2021 Feb; 27(4):836-854. PubMed ID: 33124068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gross primary production responses to warming, elevated CO
    Ryan EM; Ogle K; Peltier D; Walker AP; De Kauwe MG; Medlyn BE; Williams DG; Parton W; Asao S; Guenet B; Harper AB; Lu X; Luus KA; Zaehle S; Shu S; Werner C; Xia J; Pendall E
    Glob Chang Biol; 2017 Aug; 23(8):3092-3106. PubMed ID: 27992952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of vegetation carbon uptake to snow-induced phenological and physiological changes across temperate China.
    Chen S; Huang Y; Wang G
    Sci Total Environ; 2019 Nov; 692():188-200. PubMed ID: 31349162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate-Driven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Global Products.
    O'Sullivan M; Smith WK; Sitch S; Friedlingstein P; Arora VK; Haverd V; Jain AK; Kato E; Kautz M; Lombardozzi D; Nabel JEMS; Tian H; Vuichard N; Wiltshire A; Zhu D; Buermann W
    Global Biogeochem Cycles; 2020 Dec; 34(12):e2020GB006613. PubMed ID: 33380772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differing climate and landscape effects on regional dryland vegetation responses during wet periods allude to future patterns.
    Petrie MD; Peters DPC; Burruss ND; Ji W; Savoy HM
    Glob Chang Biol; 2019 Oct; 25(10):3305-3318. PubMed ID: 31180158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.