BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34990671)

  • 1. Co-occurrence and correlations of PFASs and chlorinated volatile organic compounds (cVOCs) in subsurface in a fluorochemical industrial park: Laboratory and field investigations.
    Ding X; Song X; Xu M; Yao J; Xu C; Tang Z; Zhang Z
    Sci Total Environ; 2022 Mar; 814():152814. PubMed ID: 34990671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of perfluoroalkyl substances in the environment compartments near a mega fluorochemical industry: Implication of specific behaviors and emission estimation.
    Feng X; Yi S; Shan G; Chen X; Yang Y; Yang L; Jia Y; Zhu Y; Zhu L
    J Hazard Mater; 2023 Mar; 445():130473. PubMed ID: 36455325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the source, migration and environmental risk of perfluoroalkyl acids and novel alternatives in groundwater beneath fluorochemical industries along the Yangtze River, China.
    Liu Z; Xu C; Johnson AC; Sun X; Wang M; Xiong J; Chen C; Wan X; Ding X; Ding M
    Sci Total Environ; 2022 Jun; 827():154413. PubMed ID: 35276179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal distribution, ecological risk assessment and source analysis of legacy and emerging Per- and Polyfluoroalkyl Substances in the Bohai Bay, China.
    Lin K; Han T; Wang R; Tan L; Yang X; Zhao T; Chen Y; Wan M; Wang J
    Chemosphere; 2022 Aug; 300():134378. PubMed ID: 35398068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution, source identification and health risk assessment of PFASs in groundwater from Jiangxi Province, China.
    Wang Q; Song X; Wei C; Ding D; Tang Z; Tu X; Chen X; Wang S
    Chemosphere; 2022 Mar; 291(Pt 2):132946. PubMed ID: 34800501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China sea coastal region.
    Wang Q; Tsui MMP; Ruan Y; Lin H; Zhao Z; Ku JPH; Sun H; Lam PKS
    Chemosphere; 2019 Sep; 231():468-477. PubMed ID: 31151006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfluoroalkyl substances in groundwater and home-produced vegetables and eggs around a fluorochemical industrial park in China.
    Bao J; Yu WJ; Liu Y; Wang X; Jin YH; Dong GH
    Ecotoxicol Environ Saf; 2019 Apr; 171():199-205. PubMed ID: 30605849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China.
    Bao J; Li CL; Liu Y; Wang X; Yu WJ; Liu ZQ; Shao LX; Jin YH
    Environ Res; 2020 Sep; 188():109751. PubMed ID: 32531525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of co-occurrence of PFASs and chlorinated aliphatic hydrocarbons on microbial communities in groundwater: A field study.
    Tang Z; Song X; Xu M; Yao J; Ali M; Wang Q; Zeng J; Ding X; Wang C; Zhang Z; Liu X
    J Hazard Mater; 2022 Aug; 435():128969. PubMed ID: 35472535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution, partitioning behavior and potential source of legacy and alternative per- and polyfluoroalkyl substances (PFASs) in water and sediments from a subtropical Gulf, South China Sea.
    Xiao SK; Wu Q; Pan CG; Yin C; Wang YH; Yu KF
    Environ Res; 2021 Oct; 201():111485. PubMed ID: 34139227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence and distribution of perfluoroalkyl substances (PFASs) in the water dissolved phase and suspended particulate matter of the Dalian Bay, China.
    Ding G; Xue H; Yao Z; Wang Y; Ge L; Zhang J; Cui F
    Chemosphere; 2018 Jun; 200():116-123. PubMed ID: 29476956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: Spatial distribution around a mega-fluorochemical industrial park, China.
    Liu Z; Lu Y; Wang T; Wang P; Li Q; Johnson AC; Sarvajayakesavalu S; Sweetman AJ
    Environ Int; 2016 May; 91():69-77. PubMed ID: 26909815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-compartment distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in an urban catchment system.
    Chen H; Reinhard M; Yin T; Nguyen TV; Tran NH; Yew-Hoong Gin K
    Water Res; 2019 May; 154():227-237. PubMed ID: 30798177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution and primary source analysis of per- and poly-fluoroalkyl substances with different chain lengths in surface and groundwater in two cities, North China.
    Yao Y; Zhu H; Li B; Hu H; Zhang T; Yamazaki E; Taniyasu S; Yamashita N; Sun H
    Ecotoxicol Environ Saf; 2014 Oct; 108():318-28. PubMed ID: 25108512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence, source apportionment, plant bioaccumulation and human exposure of legacy and emerging per- and polyfluoroalkyl substances in soil and plant leaves near a landfill in China.
    Xu C; Song X; Liu Z; Ding X; Chen H; Ding D
    Sci Total Environ; 2021 Jul; 776():145731. PubMed ID: 33647664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China.
    Liu Z; Lu Y; Shi Y; Wang P; Jones K; Sweetman AJ; Johnson AC; Zhang M; Zhou Y; Lu X; Su C; Sarvajayakesavaluc S; Khan K
    Environ Int; 2017 Sep; 106():37-47. PubMed ID: 28558301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Per- and polyfluoroalkyl substances (PFASs) in water and sediment from a temperate watershed in China: Occurrence, sources, and ecological risks.
    An X; Lei H; Lu Y; Xie X; Wang P; Liao J; Liang Z; Sun B; Wu Z
    Sci Total Environ; 2023 Sep; 890():164207. PubMed ID: 37196964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River basin in China using receptor models and isomeric fingerprints.
    Li Y; Feng X; Zhou J; Zhu L
    Water Res; 2020 Jan; 168():115145. PubMed ID: 31614237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of occurrence, sources and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in a tropical urban catchment.
    Chen H; Reinhard M; Nguyen TV; You L; He Y; Gin KY
    Environ Pollut; 2017 Aug; 227():397-405. PubMed ID: 28486183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.