These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 34990680)
1. The capture technology matters: Composition of municipal wastewater solids drives complexity of microbial community structure and volatile fatty acid profile during anaerobic fermentation. Brison A; Rossi P; Gelb A; Derlon N Sci Total Environ; 2022 Apr; 815():152762. PubMed ID: 34990680 [TBL] [Abstract][Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. Anaerobic fermentation of hydrothermal liquefaction wastewater of dewatered sewage sludge for volatile fatty acids production with focuses on the degradation of organic components and microbial community compositions. Chen Z; Rao Y; Usman M; Chen H; Białowiec A; Zhang S; Luo G Sci Total Environ; 2021 Jul; 777():146077. PubMed ID: 33684756 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Feng L; Chen Y; Zheng X Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649 [TBL] [Abstract][Full Text] [Related]
5. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids. Ucisik AS; Henze M Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214 [TBL] [Abstract][Full Text] [Related]
6. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Liu H; Han P; Liu H; Zhou G; Fu B; Zheng Z Bioresour Technol; 2018 Jul; 260():105-114. PubMed ID: 29625281 [TBL] [Abstract][Full Text] [Related]
7. Upgrading volatile fatty acids production through anaerobic co-fermentation of mushroom residue and sewage sludge: Performance evaluation and kinetic analysis. Fang W; Zhang P; Zhang T; Requeson DC; Poser M J Environ Manage; 2019 Jul; 241():612-618. PubMed ID: 30962005 [TBL] [Abstract][Full Text] [Related]
8. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation. Zhang Q; Lu Y; Zhou X; Wang X; Zhu J Sci Total Environ; 2020 Dec; 748():142390. PubMed ID: 33113691 [TBL] [Abstract][Full Text] [Related]
9. Sewage sludge acidogenic fermentation for organic resource recovery towards carbon neutrality: An experimental survey testing the headspace influence. Mineo A; Cosenza A; Mannina G Bioresour Technol; 2023 Jan; 367():128217. PubMed ID: 36332859 [TBL] [Abstract][Full Text] [Related]
10. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716 [TBL] [Abstract][Full Text] [Related]
11. A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor. Liu H; Wang L; Zhang X; Fu B; Liu H; Li Y; Lu X J Hazard Mater; 2019 Mar; 365():912-920. PubMed ID: 30497045 [TBL] [Abstract][Full Text] [Related]
12. Effects of enzymes on organic matter conversion in anaerobic fermentation of sludge to produce volatile fatty acids. Wan J; Zhang L; Jia B; Yang B; Luo Z; Yang J; Boguta P; Su X Bioresour Technol; 2022 Dec; 366():128227. PubMed ID: 36332860 [TBL] [Abstract][Full Text] [Related]
13. Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation. Owusu-Agyeman I; Plaza E; Cetecioglu Z Waste Manag; 2020 Jul; 112():30-39. PubMed ID: 32497899 [TBL] [Abstract][Full Text] [Related]
14. Thermal hydrolysis pre-treatment has no positive influence on volatile fatty acids production from sewage sludge. Castro-Fernandez A; Taboada-Santos A; Balboa S; Lema JM Bioresour Technol; 2023 May; 376():128839. PubMed ID: 36906240 [TBL] [Abstract][Full Text] [Related]
15. Seasonal variations in acidogenic fermentation of filter primary sludge. Ossiansson E; Persson F; Bengtsson S; Cimbritz M; Gustavsson DJI Water Res; 2023 Aug; 242():120181. PubMed ID: 37343334 [TBL] [Abstract][Full Text] [Related]
16. Primary filtration of municipal wastewater with sludge fermentation - Impacts on biological nutrient removal. Ossiansson E; Bengtsson S; Persson F; Cimbritz M; Gustavsson DJI Sci Total Environ; 2023 Dec; 902():166483. PubMed ID: 37611717 [TBL] [Abstract][Full Text] [Related]
17. Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale. Da Ros C; Conca V; Eusebi AL; Frison N; Fatone F Water Res; 2020 May; 174():115633. PubMed ID: 32109752 [TBL] [Abstract][Full Text] [Related]
18. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH? Ma H; Chen X; Liu H; Liu H; Fu B Waste Manag; 2016 Feb; 48():397-403. PubMed ID: 26652215 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation. Yesil H; Tugtas AE; Bayrakdar A; Calli B Water Sci Technol; 2014; 69(10):2132-8. PubMed ID: 24845331 [TBL] [Abstract][Full Text] [Related]
20. Influence of volatile solids and pH for the production of volatile fatty acids: Batch fermentation tests using sewage sludge. Presti D; Cosenza A; Capri FC; Gallo G; Alduina R; Mannina G Bioresour Technol; 2021 Dec; 342():125853. PubMed ID: 34536841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]