These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3499139)

  • 1. The mechanism of action of GTP on Ca2+ efflux from rat liver microsomal vesicles.
    Dawson AP; Hills G; Comerford JG
    Biochem J; 1987 May; 244(1):87-92. PubMed ID: 3499139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of GTP-mediated microsomal Ca2+ release.
    Joseph SK; Rice HL; Nicchitta CV
    Biochim Biophys Acta; 1988 Nov; 945(2):185-94. PubMed ID: 3056523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of GTP on inositol 1,4,5-trisphosphate-stimulated Ca2+ efflux from a rat liver microsomal fraction. Is a GTP-dependent protein phosphorylation involved?
    Dawson AP; Comerford JG; Fulton DV
    Biochem J; 1986 Mar; 234(2):311-5. PubMed ID: 3487314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MgATP-dependent glucose 6-phosphate-stimulated Ca2+ accumulation in liver microsomal fractions. Effects of inositol 1,4,5-trisphosphate and GTP.
    Benedetti A; Fulceri R; Romani A; Comporti M
    J Biol Chem; 1988 Mar; 263(7):3466-73. PubMed ID: 3257759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes.
    Dawson AP
    FEBS Lett; 1985 Jun; 185(1):147-50. PubMed ID: 3873359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of action of GTP on Ca2+ efflux from rat liver microsomal vesicles. Measurement of vesicle fusion by fluorescence energy transfer.
    Comerford JG; Dawson AP
    Biochem J; 1988 Jan; 249(1):89-93. PubMed ID: 3342018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GTP-dependent Ca2+ release from rat liver microsomes. Vesicle fusion is not required.
    Kleineke J; Schröder A; Söling HD
    FEBS Lett; 1989 Mar; 245(1-2):274-8. PubMed ID: 2647523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of inositol 1,4,5-trisphosphate and GTP on calcium release from rat liver microsomes.
    Lukács GL; Hajnóczky G; Hunyady L; Spät A
    Biochim Biophys Acta; 1987 Nov; 931(2):251-4. PubMed ID: 3499178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line.
    Ueda T; Chueh SH; Noel MW; Gill DL
    J Biol Chem; 1986 Mar; 261(7):3184-92. PubMed ID: 3081502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GTP- and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines.
    Chueh SH; Mullaney JM; Ghosh TK; Zachary AL; Gill DL
    J Biol Chem; 1987 Oct; 262(28):13857-64. PubMed ID: 3498720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of inositol 1,4,5-trisphosphate and GTP on calcium release from pituitary microsomes.
    Kiesel L; Lukács GL; Eberhardt I; Runnebaum B; Spät A
    FEBS Lett; 1987 Jun; 217(1):85-8. PubMed ID: 3496242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms.
    Chueh SH; Gill DL
    J Biol Chem; 1986 Oct; 261(30):13883-6. PubMed ID: 3533912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanosine 5'-triphosphate releases calcium from rat liver and guinea pig parotid gland endoplasmic reticulum independently of inositol 1,4,5-trisphosphate.
    Henne V; Söling HD
    FEBS Lett; 1986 Jul; 202(2):267-73. PubMed ID: 3487467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GTP mobilization of Ca2+ from the endoplasmic reticulum of islets. Comparison with myo-inositol 1,4,5-trisphosphate.
    Wolf BA; Florholmen J; Colca JR; McDaniel ML
    Biochem J; 1987 Feb; 242(1):137-41. PubMed ID: 3297043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of limited proteolysis on GTP-dependent Ca2+ efflux and GTP-dependent fusion in rat liver microsomal vesicles.
    Comerford JG; Dawson AP
    Biochem J; 1989 Mar; 258(3):823-9. PubMed ID: 2499309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GTP-mediated Ca2+ release in rough endoplasmic reticulum. Correlation with a GTP-sensitive increase in membrane permeability.
    Nicchitta CV; Joseph SK; Williamson JR
    Biochem J; 1987 Dec; 248(3):741-7. PubMed ID: 2829838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H+ uptake increases GTP-induced connection of inositol 1,4,5-trisphosphate- and caffeine-sensitive calcium pools in pancreatic microsomal vesicles.
    Ozawa T; Schulz I
    Biochem Biophys Res Commun; 1991 Oct; 180(2):755-64. PubMed ID: 1835385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GTP and Ca2+ modulate the inositol 1,4,5-trisphosphate-dependent Ca2+ release in streptolysin O-permeabilized bovine adrenal chromaffin cells.
    Föhr KJ; Ahnert-Hilger G; Stecher B; Scott J; Gratzl M
    J Neurochem; 1991 Feb; 56(2):665-70. PubMed ID: 1988562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus-response coupling in a cell-free platelet membrane system. GTP-dependent release of Ca2+ by thrombin, and inhibition by pertussis toxin and a monoclonal antibody that blocks calcium release by IP3.
    O'Rourke F; Zavoico GB; Smith LH; Feinstein MB
    FEBS Lett; 1987 Apr; 214(1):176-80. PubMed ID: 3106084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of action of GTP in the induction of Ca2+ release from hepatic microsomes.
    Kimura S; Higham S; Robison BC; Kraus-Friedmann N
    J Biochem; 1990 Apr; 107(4):550-3. PubMed ID: 2141600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.