These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
499 related articles for article (PubMed ID: 34991569)
1. Risk factor analysis and nomogram for predicting in-hospital mortality in ICU patients with sepsis and lung infection. Ren Y; Zhang L; Xu F; Han D; Zheng S; Zhang F; Li L; Wang Z; Lyu J; Yin H BMC Pulm Med; 2022 Jan; 22(1):17. PubMed ID: 34991569 [TBL] [Abstract][Full Text] [Related]
2. Nomogram predictive model for in-hospital mortality risk in elderly ICU patients with urosepsis. Wei J; Liang R; Liu S; Dong W; Gao J; Hua T; Xiao W; Li H; Zhu H; Hu J; Cao S; Liu Y; Lyu J; Yang M BMC Infect Dis; 2024 Apr; 24(1):442. PubMed ID: 38671376 [TBL] [Abstract][Full Text] [Related]
3. [Development and validation of a prognostic model for patients with sepsis in intensive care unit]. Jiang Z; Wang H; Wang S; Guan C; Qu Y Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Aug; 35(8):800-806. PubMed ID: 37593856 [TBL] [Abstract][Full Text] [Related]
4. [Development and validation of a nomogram for predicting 3-month mortality risk in patients with sepsis-associated acute kidney injury]. Yue X; Li Z; Wang L; Huang L; Zhao Z; Wang P; Wang S; Gong X; Zhang S; Wang Z Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 May; 36(5):465-470. PubMed ID: 38845491 [TBL] [Abstract][Full Text] [Related]
5. [Construction and verification of a nomogram of factors influencing the risk of death in patient with sepsis-associated thrombocytopenia]. Gu C; Wang H; Li Y; Cao Q; Zuo X Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Feb; 36(2):131-136. PubMed ID: 38442926 [TBL] [Abstract][Full Text] [Related]
6. Predictive nomogram for 28-day mortality risk in mitral valve disorder patients in the intensive care unit: A comprehensive assessment from the MIMIC-III database. Qiu Y; Li M; Song X; Li Z; Ma A; Meng Z; Li Y; Tan M Int J Cardiol; 2024 Jul; 407():132105. PubMed ID: 38677334 [TBL] [Abstract][Full Text] [Related]
7. Development of a nomogram to predict 30-day mortality of patients with sepsis-associated encephalopathy: a retrospective cohort study. Yang Y; Liang S; Geng J; Wang Q; Wang P; Cao Y; Li R; Gao G; Li L J Intensive Care; 2020; 8():45. PubMed ID: 32637121 [TBL] [Abstract][Full Text] [Related]
8. Predicting the Risk of In-Hospital Mortality in Traumatic Brain Injury Patients on Invasive Mechanical Ventilation in the Intensive Care Unit: Construction and Validation of an Online Nomogram. Kou Y; Guo S; Fan Z; Zhou C; Zhou W; Wang Y; Ji P; Liu J; Zhai Y; Chao M; Jiao Y; Zhao W; Fan C; Wang N; Liu X; Wang L World Neurosurg; 2024 Oct; 190():e891-e919. PubMed ID: 39147020 [TBL] [Abstract][Full Text] [Related]
9. Development of a nomogram for predicting 90-day mortality in patients with sepsis-associated liver injury. Cui L; Bao J; Yu C; Zhang C; Huang R; Liu L; Shao M Sci Rep; 2023 Mar; 13(1):3662. PubMed ID: 36871054 [TBL] [Abstract][Full Text] [Related]
10. [Analysis of 28 day-mortality risk factors in sepsis patients and construction and validation of predictive model]. Shao H; Wang Y; Zhang H; Zhou Y; Zhang J; Yao H; Liu D; Liu D Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 May; 36(5):478-484. PubMed ID: 38845493 [TBL] [Abstract][Full Text] [Related]
11. Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms. Wang Y; Sun X; Lu J; Zhong L; Yang Z Ann Med; 2024 Dec; 56(1):2388709. PubMed ID: 39155811 [TBL] [Abstract][Full Text] [Related]
12. Establishment of a prognostic model for patients with sepsis based on SOFA: a retrospective cohort study. Liu H; Zhang L; Xu F; Li S; Wang Z; Han D; Zhang F; Lyu J; Yin H J Int Med Res; 2021 Sep; 49(9):3000605211044892. PubMed ID: 34586931 [TBL] [Abstract][Full Text] [Related]
13. Development of a novel tool: a nomogram for predicting in-hospital mortality of patients in intensive care unit after percutaneous coronary intervention. Yuan M; Ren BC; Wang Y; Ren F; Gao D BMC Anesthesiol; 2023 Jan; 23(1):5. PubMed ID: 36609220 [TBL] [Abstract][Full Text] [Related]
14. [Comparison of simplified acute physiology score III and other scoring systems in prediction of 28-day prognosis in patients with severe sepsis]. Li Y; Li C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2015 Jun; 27(6):454-9. PubMed ID: 26049183 [TBL] [Abstract][Full Text] [Related]
15. Predictors and nomogram of in-hospital mortality in sepsis-induced myocardial injury: a retrospective cohort study. Xu KZ; Xu P; Li JJ; Zuo AF; Wang SB; Han F BMC Anesthesiol; 2023 Jul; 23(1):230. PubMed ID: 37420185 [TBL] [Abstract][Full Text] [Related]
16. Development of a Nomogram to Predict 28-Day Mortality of Patients With Sepsis-Induced Coagulopathy: An Analysis of the MIMIC-III Database. Lu Z; Zhang J; Hong J; Wu J; Liu Y; Xiao W; Hua T; Yang M Front Med (Lausanne); 2021; 8():661710. PubMed ID: 33889591 [No Abstract] [Full Text] [Related]
17. Development and validation a nomogram prediction model for early diagnosis of bloodstream infections in the intensive care unit. Qi Z; Dong L; Lin J; Duan M Front Cell Infect Microbiol; 2024; 14():1348896. PubMed ID: 38500500 [TBL] [Abstract][Full Text] [Related]
18. One-year mortality prediction for patients with sepsis: a nomogram integrating lactic dehydrogenase and clinical characteristics. Wang J; Fei W; Song Q BMC Infect Dis; 2023 Oct; 23(1):668. PubMed ID: 37807068 [TBL] [Abstract][Full Text] [Related]
19. A novel risk-predicted nomogram for sepsis associated-acute kidney injury among critically ill patients. Yang S; Su T; Huang L; Feng LH; Liao T BMC Nephrol; 2021 May; 22(1):173. PubMed ID: 33971853 [TBL] [Abstract][Full Text] [Related]
20. DEVELOPMENT AND VALIDATION OF A NOMOGRAM FOR PREDICTING 28-DAY IN-HOSPITAL MORTALITY IN SEPSIS PATIENTS BASED ON AN OPTIMIZED ACUTE PHYSIOLOGY AND CHRONIC HEALTH EVALUATION II SCORE. Yuan Y; Meng Y; Li Y; Zhou J; Wang J; Jiang Y; Ma L Shock; 2024 May; 61(5):718-727. PubMed ID: 38517232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]