These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 34991618)
21. piSTING: A Pocket-Independent Agonist Based on Multivalency-Driven STING Oligomerization. Zhuo SH; Wang TY; Zhao L; Su JY; Hu JJ; Zhao YF; Li YM Angew Chem Int Ed Engl; 2024 Sep; 63(38):e202407037. PubMed ID: 38767062 [TBL] [Abstract][Full Text] [Related]
22. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. Yang H; Lee WS; Kong SJ; Kim CG; Kim JH; Chang SK; Kim S; Kim G; Chon HJ; Kim C J Clin Invest; 2019 Jul; 129(10):4350-4364. PubMed ID: 31343989 [TBL] [Abstract][Full Text] [Related]
23. Delivery of a STING Agonist Using Lipid Nanoparticles Inhibits Pancreatic Cancer Growth. Shaji SG; Patel P; Mamani UF; Guo Y; Koirala S; Lin CY; Alahmari M; Omoscharka E; Cheng K Int J Nanomedicine; 2024; 19():8769-8778. PubMed ID: 39220196 [TBL] [Abstract][Full Text] [Related]
24. Cytosolic Delivery of Thiolated Mn-cGAMP Nanovaccine to Enhance the Antitumor Immune Responses. Chen C; Tong Y; Zheng Y; Shi Y; Chen Z; Li J; Liu X; Zhang D; Yang H Small; 2021 Apr; 17(17):e2006970. PubMed ID: 33719177 [TBL] [Abstract][Full Text] [Related]
25. Dual-Modality Imaging-Guided Manganese-Based Nanotransformer for Enhanced Gas-Photothermal Therapy Combined Immunotherapeutic Strategy Against Triple-Negative Breast Cancer. Guan X; Zeng N; Zhao Y; Huang X; Lai S; Shen G; Zhang W; Wang N; Yao W; Guo Y; Yang R; Wang Z; Jiang X Small; 2024 May; 20(22):e2307961. PubMed ID: 38126911 [TBL] [Abstract][Full Text] [Related]
26. Sono-Driven STING Activation using Semiconducting Polymeric Nanoagonists for Precision Sono-Immunotherapy of Head and Neck Squamous Cell Carcinoma. Jiang J; Zhang M; Lyu T; Chen L; Wu M; Li R; Li H; Wang X; Jiang X; Zhen X Adv Mater; 2023 Jul; 35(30):e2300854. PubMed ID: 37119091 [TBL] [Abstract][Full Text] [Related]
27. Microparticle Delivery of a STING Agonist Enables Indirect Activation of NK Cells by Antigen-Presenting Cells. Watkins-Schulz R; Batty CJ; Stiepel RT; Schmidt ME; Sandor AM; Chou WC; Ainslie KM; Bachelder EM; Ting JP Mol Pharm; 2022 Sep; 19(9):3125-3138. PubMed ID: 35913984 [TBL] [Abstract][Full Text] [Related]
28. Photothermal Therapy Nanomaterials Boosting Transformation of Fe(III) into Fe(II) in Tumor Cells for Highly Improving Chemodynamic Therapy. Nie X; Xia L; Wang HL; Chen G; Wu B; Zeng TY; Hong CY; Wang LH; You YZ ACS Appl Mater Interfaces; 2019 Sep; 11(35):31735-31742. PubMed ID: 31393101 [TBL] [Abstract][Full Text] [Related]
29. NIR responsive nanoenzymes via photothermal ablation and hypoxia reversal to potentiate the STING-dependent innate antitumor immunity. Li Q; Yang M; Sun X; Wang Q; Yu B; Gong A; Zhang M; Du F Mater Today Bio; 2023 Apr; 19():100566. PubMed ID: 36816600 [TBL] [Abstract][Full Text] [Related]
30. Dual-enzyme decorated semiconducting polymer nanoagents for second near-infrared photoactivatable ferroptosis-immunotherapy. Liu Y; Lu R; Li M; Cheng D; Wang F; Ouyang X; Zhang Y; Zhang Q; Li J; Peng S Mater Horiz; 2024 May; 11(10):2406-2419. PubMed ID: 38440840 [TBL] [Abstract][Full Text] [Related]
31. Lanthanide-Nucleotide Coordination Nanoparticles for STING Activation. Luo Z; Liang X; He T; Qin X; Li X; Li Y; Li L; Loh XJ; Gong C; Liu X J Am Chem Soc; 2022 Sep; 144(36):16366-16377. PubMed ID: 36037283 [TBL] [Abstract][Full Text] [Related]
32. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Liu Y; Crowe WN; Wang L; Lu Y; Petty WJ; Habib AA; Zhao D Nat Commun; 2019 Nov; 10(1):5108. PubMed ID: 31704921 [TBL] [Abstract][Full Text] [Related]
33. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Wilson DR; Sen R; Sunshine JC; Pardoll DM; Green JJ; Kim YJ Nanomedicine; 2018 Feb; 14(2):237-246. PubMed ID: 29127039 [TBL] [Abstract][Full Text] [Related]
34. Thermosusceptible Nitric-Oxide-Releasing Nitrogel for Strengthening Antitumor Immune Responses with Tumor Collagen Diminution and Deep Tissue Delivery during NIR Laser-Assisted Photoimmunotherapy. Mohapatra A; Mondal J; Sathiyamoorthy P; Mohanty A; Revuri V; Rajendrakumar SK; Lee YK; Park IK ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36896475 [TBL] [Abstract][Full Text] [Related]
35. Nanocodelivery of an NIR photothermal agent and an acid-responsive TLR7 agonist prodrug to enhance cancer photothermal immunotherapy and the abscopal effect. Chen B; Huang R; Zeng W; Wang W; Min Y Biomaterials; 2024 Mar; 305():122434. PubMed ID: 38141501 [TBL] [Abstract][Full Text] [Related]
36. Near-Infrared Photoactivatable Immunomodulatory Nanoparticles for Combinational Immunotherapy of Cancer. Yu N; Ding M; Li J Front Chem; 2021; 9():701427. PubMed ID: 34109160 [TBL] [Abstract][Full Text] [Related]
37. Bifunctional black phosphorus quantum dots platform: Delivery and remarkable immunotherapy enhancement of STING agonist. Zhang Y; Wang S; Rha H; Xu C; Pei Y; Ji X; Zhang J; Lu R; Zhang S; Xie Z; Kim JS Biomaterials; 2024 Dec; 311():122696. PubMed ID: 38971121 [TBL] [Abstract][Full Text] [Related]
38. Immunogenic Cell Death Augmented by Manganese Zinc Sulfide Nanoparticles for Metastatic Melanoma Immunotherapy. Li Z; Chu Z; Yang J; Qian H; Xu J; Chen B; Tian T; Chen H; Xu Y; Wang F ACS Nano; 2022 Sep; 16(9):15471-15483. PubMed ID: 35981098 [TBL] [Abstract][Full Text] [Related]
39. Organic Semiconducting Pro-nanostimulants for Near-Infrared Photoactivatable Cancer Immunotherapy. Li J; Cui D; Huang J; He S; Yang Z; Zhang Y; Luo Y; Pu K Angew Chem Int Ed Engl; 2019 Sep; 58(36):12680-12687. PubMed ID: 31278823 [TBL] [Abstract][Full Text] [Related]
40. Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer. Corrales L; Gajewski TF Clin Cancer Res; 2015 Nov; 21(21):4774-9. PubMed ID: 26373573 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]