These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34991658)

  • 1. Diurnal RNAPII-tethered chromatin interactions are associated with rhythmic gene expression in rice.
    Deng L; Gao B; Zhao L; Zhang Y; Zhang Q; Guo M; Yang Y; Wang S; Xie L; Lou H; Ma M; Zhang W; Cao Z; Zhang Q; McClung CR; Li G; Li X
    Genome Biol; 2022 Jan; 23(1):7. PubMed ID: 34991658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.
    Filichkin SA; Breton G; Priest HD; Dharmawardhana P; Jaiswal P; Fox SE; Michael TP; Chory J; Kay SA; Mockler TC
    PLoS One; 2011; 6(6):e16907. PubMed ID: 21694767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated 3D genome, epigenome and transcriptome analyses reveal transcriptional coordination of circadian rhythm in rice.
    Zhang Y; Chen G; Deng L; Gao B; Yang J; Ding C; Zhang Q; Ouyang W; Guo M; Wang W; Liu B; Zhang Q; Sung WK; Yan J; Li G; Li X
    Nucleic Acids Res; 2023 Sep; 51(17):9001-9018. PubMed ID: 37572350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis.
    Song Q; Huang TY; Yu HH; Ando A; Mas P; Ha M; Chen ZJ
    Genome Biol; 2019 Aug; 20(1):170. PubMed ID: 31429787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulatory logic of the diurnal cycle in the mouse liver.
    Sobel JA; Krier I; Andersin T; Raghav S; Canella D; Gilardi F; Kalantzi AS; Rey G; Weger B; Gachon F; Dal Peraro M; Hernandez N; Schibler U; Deplancke B; Naef F;
    PLoS Biol; 2017 Apr; 15(4):e2001069. PubMed ID: 28414715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle.
    Mermet J; Yeung J; Naef F
    PLoS Genet; 2021 Feb; 17(2):e1009350. PubMed ID: 33524027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.
    Koike N; Yoo SH; Huang HC; Kumar V; Lee C; Kim TK; Takahashi JS
    Science; 2012 Oct; 338(6105):349-54. PubMed ID: 22936566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice.
    Liu C; Qu X; Zhou Y; Song G; Abiri N; Xiao Y; Liang F; Jiang D; Hu Z; Yang D
    Plant Cell Environ; 2018 Mar; 41(3):630-645. PubMed ID: 29314052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The global and promoter-centric 3D genome organization temporally resolved during a circadian cycle.
    Furlan-Magaril M; Ando-Kuri M; Arzate-Mejía RG; Morf J; Cairns J; Román-Figueroa A; Tenorio-Hernández L; Poot-Hernández AC; Andrews S; Várnai C; Virk B; Wingett SW; Fraser P
    Genome Biol; 2021 Jun; 22(1):162. PubMed ID: 34099014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila.
    Kwok RS; Li YH; Lei AJ; Edery I; Chiu JC
    PLoS Genet; 2015 Jul; 11(7):e1005307. PubMed ID: 26132408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation.
    Zhao L; Wang S; Cao Z; Ouyang W; Zhang Q; Xie L; Zheng R; Guo M; Ma M; Hu Z; Sung WK; Zhang Q; Li G; Li X
    Nat Commun; 2019 Aug; 10(1):3640. PubMed ID: 31409785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.
    Le Martelot G; Canella D; Symul L; Migliavacca E; Gilardi F; Liechti R; Martin O; Harshman K; Delorenzi M; Desvergne B; Herr W; Deplancke B; Schibler U; Rougemont J; Guex N; Hernandez N; Naef F;
    PLoS Biol; 2012; 10(11):e1001442. PubMed ID: 23209382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drought stress modulates diurnal oscillations of circadian clock and drought-responsive genes in Oryza sativa L.
    Li J; Liu YH; Zhang Y; Chen C; Yu X; Yu SW
    Yi Chuan; 2017 Sep; 39(9):837-846. PubMed ID: 28936981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense Transcription of the
    Cemel IA; Diernfellner ACR; Brunner M
    J Biol Rhythms; 2023 Jun; 38(3):259-268. PubMed ID: 36876962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide discovery of the daily transcriptome, DNA regulatory elements and transcription factor occupancy in the monarch butterfly brain.
    Lugena AB; Zhang Y; Menet JS; Merlin C
    PLoS Genet; 2019 Jul; 15(7):e1008265. PubMed ID: 31335862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diurnal oscillations of epigenetic modifications are associated with variation in rhythmic expression of homoeologous genes in Brassica napus.
    Xue Z; Gao B; Chen G; Liu J; Ouyang W; Foda MF; Zhang Q; Zhang X; Zhang W; Guo M; Li X; Yi B
    BMC Biol; 2023 Oct; 21(1):241. PubMed ID: 37907908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhythms of the Genome: Circadian Dynamics from Chromatin Topology, Tissue-Specific Gene Expression, to Behavior.
    Yeung J; Naef F
    Trends Genet; 2018 Dec; 34(12):915-926. PubMed ID: 30309754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms.
    Weger BD; Gobet C; David FPA; Atger F; Martin E; Phillips NE; Charpagne A; Weger M; Naef F; Gachon F
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33452134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape.
    Qu M; Qu H; Jia Z; Kay SA
    Nat Commun; 2021 Nov; 12(1):6350. PubMed ID: 34732735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achilles-Mediated and Sex-Specific Regulation of Circadian mRNA Rhythms in Drosophila.
    Li J; Yu RY; Emran F; Chen BE; Hughes ME
    J Biol Rhythms; 2019 Apr; 34(2):131-143. PubMed ID: 30803307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.