These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34991722)

  • 21. Microbial composition, rumen fermentation parameters, enteric methane emissions, and lactational performance of phenotypically high and low methane-emitting dairy cows.
    Stepanchenko N; Stefenoni H; Hennessy M; Nagaraju I; Wasson DE; Cueva SF; Räisänen SE; Dechow CD; Pitta DW; Hristov AN
    J Dairy Sci; 2023 Sep; 106(9):6146-6170. PubMed ID: 37479584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.
    Jeyanathan J; Martin C; Morgavi DP
    Animal; 2014 Feb; 8(2):250-61. PubMed ID: 24274095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine.
    Martínez-Álvaro M; Auffret MD; Stewart RD; Dewhurst RJ; Duthie CA; Rooke JA; Wallace RJ; Shih B; Freeman TC; Watson M; Roehe R
    Front Microbiol; 2020; 11():659. PubMed ID: 32362882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation.
    Ungerfeld EM
    Front Microbiol; 2015; 6():1272. PubMed ID: 26635743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro - Part 1. Dairy cows.
    Huang R; Romero P; Belanche A; Ungerfeld EM; Yanez-Ruiz D; Morgavi DP; Popova M
    Animal; 2023 May; 17(5):100788. PubMed ID: 37087996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions.
    Min BR; Lee S; Jung H; Miller DN; Chen R
    Animals (Basel); 2022 Apr; 12(8):. PubMed ID: 35454195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proper motility enhances rumen fermentation and microbial protein synthesis with decreased saturation of dissolved gases in rumen simulation technique.
    Adebayo Arowolo M; Zhang XM; Wang M; Wang R; Wen JN; Hao LZ; He JH; Shen WJ; Ma ZY; Tan ZL
    J Dairy Sci; 2022 Jan; 105(1):231-241. PubMed ID: 34696908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Holistic Assessment of Rumen Microbiome Dynamics through Quantitative Metatranscriptomics Reveals Multifunctional Redundancy during Key Steps of Anaerobic Feed Degradation.
    Söllinger A; Tveit AT; Poulsen M; Noel SJ; Bengtsson M; Bernhardt J; Frydendahl Hellwing AL; Lund P; Riedel K; Schleper C; Højberg O; Urich T
    mSystems; 2018; 3(4):. PubMed ID: 30116788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis.
    Ungerfeld EM
    Front Microbiol; 2015; 6():37. PubMed ID: 25699029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning.
    Schönhusen U; Zitnan R; Kuhla S; Jentsch W; Derno M; Voigt J
    Arch Tierernahr; 2003 Aug; 57(4):279-95. PubMed ID: 14533867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of type of substrate and dilution rate on fermentation in serial rumen mixed cultures.
    Ungerfeld EM; Cancino-Padilla N; Vera-Aguilera N; Scorcione MC; Saldivia M; Lagos-Pailla L; Vera M; Cerda C; Muñoz C; Urrutia N; Martínez ED
    Front Microbiol; 2024; 15():1356966. PubMed ID: 38389534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows.
    Ma ZY; Zhang XM; Wang M; Wang R; Jiang ZY; Tan ZL; Gao FX; Muhammed A
    J Dairy Sci; 2019 Jun; 102(6):5566-5576. PubMed ID: 30981486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decreasing ruminal methane production through enhancing the sulfate reduction pathway.
    Zhao Y; Zhao G
    Anim Nutr; 2022 Jun; 9():320-326. PubMed ID: 35600554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique.
    Wang M; Wang R; Yang S; Deng JP; Tang SX; Tan ZL
    Anim Sci J; 2016 Feb; 87(2):224-32. PubMed ID: 26223853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle.
    Martinez-Fernandez G; Denman SE; Yang C; Cheung J; Mitsumori M; McSweeney CS
    Front Microbiol; 2016; 7():1122. PubMed ID: 27486452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exhaled volatile fatty acids, ruminal methane emission, and their diurnal patterns in lactating dairy cows.
    Islam MZ; Giannoukos S; Räisänen SE; Wang K; Ma X; Wahl F; Zenobi R; Niu M
    J Dairy Sci; 2023 Oct; 106(10):6849-6859. PubMed ID: 37210352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of 3-nitrooxypropanol on enteric methane emissions of feedlot cattle fed with a tempered barley-based diet with canola oil.
    Almeida AK; Cowley F; McMeniman JP; Karagiannis A; Walker N; Tamassia LFM; McGrath JJ; Hegarty RS
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37429613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ozone Decreased Enteric Methane Production by 20% in an
    Zhao L; Caro E; Holman DB; Gzyl KE; Moate PJ; Chaves AV
    Front Microbiol; 2020; 11():571537. PubMed ID: 33224114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Review: Plant Carbohydrate Types-The Potential Impact on Ruminant Methane Emissions.
    Sun X; Cheng L; Jonker A; Munidasa S; Pacheco D
    Front Vet Sci; 2022; 9():880115. PubMed ID: 35782553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of reductive acetogenic bacteria and lauric acid on in vivo ruminal fermentation, microbial populations, and methane mitigation in Hanwoo steers in South Korea.
    Kim SH; Mamuad LL; Choi YJ; Sung HG; Cho KK; Lee SS
    J Anim Sci; 2018 Sep; 96(10):4360-4367. PubMed ID: 30060161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.