These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 34991722)
41. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Lan W; Yang C Sci Total Environ; 2019 Mar; 654():1270-1283. PubMed ID: 30841400 [TBL] [Abstract][Full Text] [Related]
42. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. Belanche A; de la Fuente G; Newbold CJ FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764558 [TBL] [Abstract][Full Text] [Related]
43. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Knapp JR; Laur GL; Vadas PA; Weiss WP; Tricarico JM J Dairy Sci; 2014; 97(6):3231-61. PubMed ID: 24746124 [TBL] [Abstract][Full Text] [Related]
44. Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community. Riede S; Boguhn J; Breves G Arch Anim Nutr; 2013; 67(5):368-80. PubMed ID: 23971537 [TBL] [Abstract][Full Text] [Related]
45. Shifts in Rumen Fermentation and Microbiota Are Associated with Dissolved Ruminal Hydrogen Concentrations in Lactating Dairy Cows Fed Different Types of Carbohydrates. Wang M; Wang R; Xie TY; Janssen PH; Sun XZ; Beauchemin KA; Tan ZL; Gao M J Nutr; 2016 Sep; 146(9):1714-21. PubMed ID: 27511925 [TBL] [Abstract][Full Text] [Related]
46. Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Wallace RJ; Snelling TJ; McCartney CA; Tapio I; Strozzi F Genet Sel Evol; 2017 Jan; 49(1):9. PubMed ID: 28093073 [TBL] [Abstract][Full Text] [Related]
47. Effects of naturally-produced lovastatin on feed digestibility, rumen fermentation, microbiota and methane emissions in goats over a 12-week treatment period. Candyrine SCL; Mahadzir MF; Garba S; Jahromi MF; Ebrahimi M; Goh YM; Samsudin AA; Sazili AQ; Chen WL; Ganesh S; Ronimus R; Muetzel S; Liang JB PLoS One; 2018; 13(7):e0199840. PubMed ID: 29975711 [TBL] [Abstract][Full Text] [Related]
48. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission. Bačėninaitė D; Džermeikaitė K; Antanaitis R Animals (Basel); 2022 Oct; 12(19):. PubMed ID: 36230428 [TBL] [Abstract][Full Text] [Related]
49. The rumen and hindgut as source of ruminant methanogenesis. Immig I Environ Monit Assess; 1996 Sep; 42(1-2):57-72. PubMed ID: 24193493 [TBL] [Abstract][Full Text] [Related]
50. - Invited Review - The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production. Shinkai T; Takizawa S; Fujimori M; Mitsumori M Anim Biosci; 2024 Feb; 37(2):360-369. PubMed ID: 37946422 [TBL] [Abstract][Full Text] [Related]
51. Inhibition of methanogenesis by nitrate, with or without defaunation, in continuous culture. Wenner BA; Wagner BK; St-Pierre NR; Yu ZT; Firkins JL J Dairy Sci; 2020 Aug; 103(8):7124-7140. PubMed ID: 32600762 [TBL] [Abstract][Full Text] [Related]
52. Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves. Ortiz-Chura A; Gere J; Marcoppido G; Depetris G; Cravero S; Faverín C; Pinares-Patiño C; Cataldi A; Cerón-Cucchi ME Anim Nutr; 2021 Dec; 7(4):1205-1218. PubMed ID: 34754962 [TBL] [Abstract][Full Text] [Related]
53. Rumen microbial responses to supplemental nitrate. II. Potential interactions with live yeast culture on the prokaryotic community and methanogenesis in continuous culture. Welty CM; Wenner BA; Wagner BK; Roman-Garcia Y; Plank JE; Meller RA; Gehman AM; Firkins JL J Dairy Sci; 2019 Mar; 102(3):2217-2231. PubMed ID: 30639000 [TBL] [Abstract][Full Text] [Related]
54. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099 [TBL] [Abstract][Full Text] [Related]
55. Dietary sources and their effects on animal production and environmental sustainability. Wanapat M; Cherdthong A; Phesatcha K; Kang S Anim Nutr; 2015 Sep; 1(3):96-103. PubMed ID: 29767156 [TBL] [Abstract][Full Text] [Related]
56. Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield. Li Q; Ma Z; Huo J; Zhang X; Wang R; Zhang S; Jiao J; Dong X; Janssen PH; Ungerfeld EM; Greening C; Tan Z; Wang M ISME J; 2024 Jan; 18(1):. PubMed ID: 38365243 [TBL] [Abstract][Full Text] [Related]
57. A theoretical comparison between two ruminal electron sinks. Ungerfeld EM Front Microbiol; 2013; 4():319. PubMed ID: 24198813 [TBL] [Abstract][Full Text] [Related]
58. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. Aguilar-Marin SB; Betancur-Murillo CL; Isaza GA; Mesa H; Jovel J BMC Microbiol; 2020 Nov; 20(1):364. PubMed ID: 33246412 [TBL] [Abstract][Full Text] [Related]
59. Management of Enteric Methane Emissions in Ruminants Using Feed Additives: A Review. Palangi V; Lackner M Animals (Basel); 2022 Dec; 12(24):. PubMed ID: 36552373 [TBL] [Abstract][Full Text] [Related]
60. Variations in methane yield and microbial community profiles in the rumen of dairy cows as they pass through stages of first lactation. Lyons T; Bielak A; Doyle E; Kuhla B J Dairy Sci; 2018 Jun; 101(6):5102-5114. PubMed ID: 29550115 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]