These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34992044)

  • 21. Core-shell silica microsphere-based trypsin nanoreactor for low molecular-weight proteome analysis.
    Wang Y; Sun S; Azhar I; Zhang Q; Qu Q; Yang L
    Anal Chim Acta; 2017 Sep; 985():194-201. PubMed ID: 28864190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template.
    Grama S; Horák D
    Physiol Res; 2015; 64(Suppl 1):S11-7. PubMed ID: 26447591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human genomic DNA isolation from whole blood using a simple microfluidic system with silica- and polymer-based stationary phases.
    Günal G; Kip Ç; Öğüt SE; Usta DD; Şenlik E; Kibar G; Tuncel A
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():10-20. PubMed ID: 28254272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies.
    Fekete S; Veuthey JL; Eeltink S; Guillarme D
    Anal Bioanal Chem; 2013 Apr; 405(10):3137-51. PubMed ID: 23358675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bimodal mesoporous silica with bottleneck pores.
    Reber MJ; Brühwiler D
    Dalton Trans; 2015 Nov; 44(41):17960-7. PubMed ID: 26399172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecularly imprinted polymeric shell coated monodisperse-porous silica microspheres as a stationary phase for microfluidic boronate affinity chromatography.
    Süngü Ç; Kip Ç; Tuncel A
    J Sep Sci; 2019 Jun; 42(11):1962-1971. PubMed ID: 30900808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cooperative effect of polyethylene glycol and lignin on SiO2 microsphere production from rice husks.
    Lin L; Zhai SR; Xiao ZY; Liu N; Song Y; Zhai B; An QD
    Bioresour Technol; 2012 Dec; 125():172-4. PubMed ID: 23026330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.
    Xia H; Wan G; Zhao J; Liu J; Bai Q
    J Chromatogr A; 2016 Nov; 1471():138-144. PubMed ID: 27765422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Preparation of large-pore silica microspheres using templating method and their applications to protein separation with high performance liquid chromatography].
    Niu M; Ma H; Hu F; Wang S; Liu L; Chang H; Huang M
    Se Pu; 2017 Jun; 35(6):565-571. PubMed ID: 29048781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water-ethanol solvents.
    Zhang H; Wu J; Zhou L; Zhang D; Qi L
    Langmuir; 2007 Jan; 23(3):1107-13. PubMed ID: 17241020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of monodisperse mesoporous silica microparticles via spray-drying.
    Waldron K; Wu WD; Wu Z; Liu W; Selomulya C; Zhao D; Chen XD
    J Colloid Interface Sci; 2014 Mar; 418():225-33. PubMed ID: 24461839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of Monodisperse Porous Silica Microspheres with a Tunable Particle Size and Pore Size for Protein Separation.
    Chen J; Zhu L; Ren L; Teng C; Wang Y; Jiang B; He J
    ACS Appl Bio Mater; 2018 Sep; 1(3):604-612. PubMed ID: 34996193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size-exclusion chromatography of low-molecular-mass polymers using mesoporous silica.
    Nassivera T; Eklund AG; Landry CC
    J Chromatogr A; 2002 Oct; 973(1-2):97-101. PubMed ID: 12437167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-Cost Synthesis of Bimodal Mesoporous Silica-Based Materials by Pseudomorphic Transformation.
    Morales JM; Moragues A; El Haskouri J; Guillem C; Latorre J; Murcia-Mascarós S; Beltrán A; Beltrán D; Amorós P
    Chempluschem; 2015 Jun; 80(6):1014-1028. PubMed ID: 31973264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Faster dewetting of water from C
    Gritti F; Hlushkou D; Tallarek U
    J Chromatogr A; 2019 Sep; 1602():253-265. PubMed ID: 31178160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography.
    Grimes BA; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2007 Mar; 1144(1):14-29. PubMed ID: 17126846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a 2.6 μm Kinetex porous shell hydrophilic interaction liquid chromatography column in supercritical fluid chromatography with a comparison to 3 μm totally porous silica.
    Berger TA
    J Chromatogr A; 2011 Jul; 1218(28):4559-68. PubMed ID: 21628062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical performance of multiple size-exclusion chromatography columns connected in series.
    Gritti F
    J Chromatogr A; 2020 Dec; 1634():461673. PubMed ID: 33189963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of RNA and beta-NAD by phenylboronic acid functionalized, monodisperse-porous silica microspheres as sorbent in batch and microfluidic boronate affinity systems.
    Kip Ç; Gülüşür H; Çelik E; Usta DD; Tuncel A
    Colloids Surf B Biointerfaces; 2019 Feb; 174():333-342. PubMed ID: 30472619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of peptides and proteins using sub-2 μm fully porous and sub 3-μm shell particles.
    Staub A; Zurlino D; Rudaz S; Veuthey JL; Guillarme D
    J Chromatogr A; 2011 Dec; 1218(49):8903-14. PubMed ID: 21831381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.